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SUMMARY

This paper explores and discusses statistical methods and procedures that may be
applied to validate the survivability of a complex system of systems that cannot be
tested as an entity.

Confidence is a much-used and much-abused concept. We employ it here in
conjunction with the capability to quantify system-level performance measures.

Procedures exist to develop system-level performance (e.g., survivability)
distributions from corresponding performance distributions for piece-parts,
components, and subsystems so that confidence statements about system
performance can be made. Monte Carlo simulation is the method proposed to
develop the system distribution from the component distributions using a system
model that registers the logical interactions of the components to perform system
functions. The system distributions permit developing point estimates and
confidence intervals and bounds. This paper defines the terms and procedures for
applying this technique.

Two principal issues surface in applying this approach to develop the survivability
of large untestable systems of systems. The first is developing and validating the
component survivability distributions. The second is that no general software is
available to develop the system models and perform the simulations, although
modifications to existing software to do so may be a feasible and attractive option.
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SECTION 1

ESTIMATING SURVIVABILITY AT THE SYSTEM LEVEL

1.1 TOP-LEVEL STATEMENT OF THE PROBLEM.

Survivability is the probability that a component, subsystem, or system continues
to function during and after being subjected to stressing threat environments, e.g., a
nuclear detonation. System survivability estimates for complex systems are develop-
ed the same way that other system-level probabilistic performance measures (e.g.,
reliability, availability, maintainability) are developed - by defining evints and
estimating their probabilities of occurrence for piece parts, component boxes, and
subsystems where test data are available to make such estimates, then combining
this information in a system-level model to develop similar estimates for the system.

Validation includes tying survivability estimates to demonstrable test results
showing the basis for survivability distributions and quantifying the associated
uncertainties with probability intervals and confidence bounds. The concept of
confidence bounds originated in classical statistics where the results of numerous
identical tests are used to make statements about how certain we are that we know
the value of specified performance parameters. Classical statistical confidence
bounds can be placed on the performance of any system or system element that can
be tested as an entity, and the tighter the bounds, the greater number of tests
required.

By system we mean any collection of piece parts, components, and subsystems
connected in some way to perform prescribed functions. The ultimate system of
interest herein is a large complex system comprising a number of major systems, i.e.,
a system of systems. We use the word system to describe collections of sub-elements
at any level of complexity.

To develop system-level performance estimates, we develop an event model of
the system to the level of detail for which we have legitimate data. If the system as a
whole can be tested repeatedly in the specified environment, then no integrating
model is required. The system is treated as an entity. The data are legitimate and
applicable, and either a performance measure probability distribution or confidence
bounds upon system performance can be developed.

Usually, complex systems cannot be tested as entities because of excessive cost, or
because the threat environments cannot be generated or the system operated
without inordinate hazard to people and property. Consequently, twe attractive
assessment option of testing the system as a whole is rarely viable.

Instead, almost universally, we are forced to structure tests, to extract data, and
to develop survivability distributions and estimates with associated uncertainty
measures on piece parts, component boxes, and subsystems, where risks and costs
are affordable. Then, by developing appropriate system models and making neces-
sary assumptions, we combine this information at the element level to develop
system-level survivability distributions and estimates with associated measures of
uncertainty (confidence).

It is important to understand that the statistical models we discuss here do not
provide the values of physical parameters involved in system operation such as

...........1.....



voltages, currents, accelerations, forces, pressures, temperatures, and displacements.
Instead, such models treat element events whose probabilities of occurrence have
been derived from knowing or estimating the actual physical parameters and their
stressing effects upon components. Such component survivability events are defined
as "Event A is the event that component A survives a specified threat." The
probability of occurrence of event A, the survivability of component A, is determined
from test data or from computer simulation of the stress imposed, and the resultant
physical damage, if any, upon component A. The likelihood of surviving is often
determined by judgment. Component fragility functions relating the probability of
killing (Pk) a component, or rendering it inoperable, to the stress level imposed may
be developed from test data, in which case, given the stress level, the Pk is known
and the survivability estimate is 1 - Pk. The stress levels themselves from specific
environments will also have uncertainty distributions, so even at the most elemental
level survivability will be expressed as a distribution, where survivability is a random
variable, not a fixed, but unknown, parameter.

Given that such survivability distributions have been, or can be, developed at the
piece part or higher level, probabilistic system models (e.g., GO models, event trees,
or fault trees) can be developed to estimate system survivability. These models are
also utilized to quantify the effects of systematic uncertainties and random errors at
the piece part, component, and subsystem levels on system-level survivability. This
can be done deterministically (point estimates) or by Monte Carlo simulation.
Simulation is a very attractive approach because it is applicable at any level of
complexity and fewer simplifying assumptions are required to employ it. With the
order of magnitude increases in computer speeds and capabilities and resultant cost
decreases within the last decade, today simulation, where samples from the distri-
butions for components and subsystems are integrated in a system-level model to
develop system-level distributions, is considered to be a tractable, desirable, and
perhaps the only feasible method for addressing this problem.

Developing validated survivability distributions for system elements for postu-
lated threat environments is the principal effort required to employ simulation to
develop system-level survivability estimates with confidence.

A major complexity in estimating survivabilities of components is introduced
when there are statistical dependencies in the amounts of damage inflicted by
imposing several simultaneous, or near-simultaneous, environments and where
synergistic damage results. In this case, some type of joint fragility function is
required to be able to predict the probability of component kill. Such relationships
are developed by testing, by computer simulation, or by artificial intelligence
models. The capability to develop or approximate these survivability distributions is
a fundamental requirement in being able to conduct quantitative system-level
survivability assessments.

Another difficult complexity is cumulative damage from several sequential
exposures of varying magnitudes from different sources. Here, time-phased
survivability estimates may be required along with the capability of simulating
performance for cumulative damage levels.

In developing the component survivability distributions there are two major, and
different, sources of uncertainty. These are systematic uncertainties and random
errors.
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Random error is irreducible experimental scatter. Electromagnetic radiation of
the same wave lengths and intensities impose varying stresses on components as
measured when conducting repeated tests on supposedly identical equipment
because of minute physical differences. This irreducible variation gives rise to
random error stress, damage, and survivability distributions that quantify the nature
and extent of such random variations.

Systematic uncertainties are parameters that have single true values which are
unknown, but which can be known by additional testing and analysis. For example,
the exact nature of the stresses imposed on electrical equipment from a specified
nuclear weapon detonated at various locations could conceivably be determined by
conducting a number of tests. In real life, however, it is manifestly impossible to
conduct more than a few such tests. Using their results we then extrapolate the
nature of the environments expected at various other locations, but with unknown
biases - systematic uncertainties.

We assume that the elemental survivability distributions that will be used to
develop system survivability distributions will include the effects of both systematic
uncertainties and random errors. Such distributions are developed by sampling from
the known or postulated distributions of both types of uncertainties with equal
weighting and frequency. The resultant distributions correctly reflect the extent of
uncertainties from all sources of error. Often, the object in performing system-level
survivability assessments is to determine how to reduce uncertainties and increase
survivability - shift the distributions to the right. With a developed system model this
can be done by performing sensitivity analyses - varying the parameters of various
elements and determining which affect system survivability most.

1.2 A SUGGESTED APPROACH.

We state at the outset, that even for relatively small systems, there is no mathe-
matically ri orous analytical method for determining the probability distributions of
system performance from the known probability distributions of the constituent
components, except for some very restricted cases, e.g., all components are in series
and have identical performance distributions. Consequently, in light of increased
computer capabilities, we see Monte Carlo simulation as being the only viable
approach for conducting assessments for complex systems. However, to our know-
ledge, at present there is no generic software to perform this task.

Over the years, several approximating schemes to place confidence bounds on
system performance based upon component information have been devised, e.g.,
Lindstrom-Madden, Maximus, Myhre, Easterling, most of which require the postu-
lated decomposition of the system to a linear array. Because the problem is so
difficult, usually requiring hand manipulation and judgment, and because there is
virtually never sufficient test or use information to fully develop the underlying
distributions, confidence bounds are seldom stated for complex system perfor-
mance, or, if so, have been derived from a limited number of tests of the system as a
whole, or by approximation and with numerous assumptions and judgments about
component performance and the validity of data. While using simulation will not
obviate all of these difficulties, it will make the estimation process legitimate, under-
standable, and tractable (although this remains to be demonstrated).

The survivability performance measure is, in many ways, more difficult to assess
than others because the components, subsystems, or system must be subjected to
realistic stressing environments (which are often severe, hazardous, or catastrophic)
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to develop quantitative survivability distributions and estimates. For postulated
nuclear weapon environments, for example, no real-life testing is possible, and all
data must be developed from limited numbers of underground tests (UGTs) and
aboveground tests (AGTs) that approximate or simulate such environments, and this
too on only piece parts, or at best, upon small portions of systems. Then this data
must be extrapolated by judgment and computer simulation to probable effects
upon larger systems with increased uncertainties.

1.3 AN ABBREVIATED TOP-LEVEL EXAMPLE.

Since simulation appears to be the only viable way to conduct system-level
performance assessments, we present an abbreviated top-level example showing
how Monte Carlo simulation can be used to develop system-level survivability
distributions and confidence functions.

The diagram in Figure 1-1 portrays the present concept of an early National
Missile Defense (NMD) system. We will use it as a baseline prototype system to
demonstrate the survivability modeling and estimation procedure we suggest for
quantifying complex system survivability and placing confidence bounds upon it.

An actual architecture will include larger numbers of sensors, radars, interceptor
farms, and interceptors, and more detailed descriptions of equipment and communi-
cation devices. For the purpose of this example this abbreviated system will suffice.

The operational concept of the early NMD of Figure 1-1 is that the orbiting DSP or
Brilliant Eyes sensors immediately detect a threat launch. For our purposes we
postulate that of 20 or so such orbiting sensors only six can "see" the launch, and to
fully perform their function of launch detection, track, threat discrimination, commit
of ground based interceptors, and subsequent kill assessment, at least four of the six
relevant sensors must remain functional throughout the attack, despite a prior or
coincident nuclear detonation in the battle space.

Upon detection of another threat launch, CINCSPACE in the command center at
Cheyenne Mountain, Colorado Springs, CO, probably already has National
Command Authority (NCA) authorization to intercept, but continues to keep the
NCA informed of the developing threat. The BMEWS/Pave Paws early warning radar
systems confirm the threat, but they may be degraded or may not have survived the
prior detonation.

CINCSPACE commands the GPALS Operations Center to engage the threat. The
GPALS Operations Center plans and tasks the Ground-Based Surveillance and
Tracking System (GSTS), then launches a GSTS missile with an IR probe and processes
its incoming data. As the threat approaches the U.S., GSTS hands-off data to the
Ground Based Radar (GBR) which acquires and tracks the follow-on threat. Of
course, the GSTS, the GPALS Operations Center, and the GBR may not have survived
the prior detonation.

The GPALS Operations Center plans the engagement and tasks specific
exoatmospheric interceptors, then launches them from a GBI launch site. On the
basis of continuing GBR data, the Operations Center transmits in-flight target
updates to the interceptors. We postulate the deployment of one, two, or at most
three interceptors. Their performance (i.e., survivability), which also depends upon
the survivability of other system elements, is the final measure of system survivability
to the postulated nuclear detonation in the battle space.
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There are several methods that could be used to develop a system level model of
this early NMD system. Perhaps the most general approach that could be used
would be to write logic event or algebraic probabilistic equations expressing the
functional relationships and probabilities of system performance. Developing
success event trees or fault trees for undesirable system events is another general
method that could be applied. For the purpose of this paper, we develop a GO
survivability logic model of the early NMD system (Figure 1-2) showing how the
various subsystems interact to develop the overall system survivability. For each of
the sub-elements of the system we assume the existence of a survivability
distribution that reflects both the systematic uncertainties and the random errors
inherent in estimating the survivability of that sub-element. These survivability
distributions may well have been derived from the simulation and combination of
similar survivability distributions for smaller system elements.

The GO model of Figure 1-2 represents each of the elements or subsystems of the
early NMD system with a pair of "type"-"kind" numbers separated by a hyphen. The
"type" number captures the logical essence of the component and refers to one of

17 defined logical operators in the GO methodology. The associated "kind" number
is simply the sequential number in an array that references the probabilities with
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Figure 1-2. G0 logic model of early NMD operational concept.
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which that component takes its several operational states - e.g., good, bad,
premature. The recorded input and output "signals" (a carryover from electrical
schematics) are really discrete random variables that take pre-defined values
representing success or failure. For this example we permit the random variables to
take only two values - 0 for success, 1 for failure. Events are then expressed as a
signal taking a value. For example, the success event that DSP satellite number 1
operates properly when we exercise the model is expressed as the event that signal
11 takes value 0, or simply 110.

Elements of the model that simply represent logical operations - "and" gates,
"or" gates, or "m out of n" - gates have no associated probabilities, and,
consequently, no associated kind numbers. For example, the type 2 operators
represent "or" gates; the type 10 operators represent "and" gates; and the type 11
operator represents an "im out of n" gate. An "m out of n" gate expresses the
number of inputs that must be good to produce a good response. In our model the
type 11 operator expresses the fact that at least 4 of the 6 satellite sensors must be
operating properly to provide the necessary information for success.

The GO system survivability logic model is developed to represent the manner in
which the various sub-elements must function and interact for the system to survive
and perform its intended mission given a postulated nuclear detonation within the
general vicinity of a theater defense system including the associated DSP or Brilliant
Eyes sensors, the GSTS, the GPALS Operations Center, the Ground Based Radar, and
the Ground Based Interceptors and Launch Site. Presumably, the Command Center is
not affected by this scenario, being both remote and extremely hard. Our purpose is
to develop the survivability of this system from a nuclear detonation in a specified
location. This will be accomplished by developing (in this case assuming) the
survivability distributions for each major subsystem, then sampling from these
distributions and combining the estimates in the system GO logic model, to develop
overall system survivability distributions by simulation. This can be done at any level
of sophistication, from piece parts to major subsystems.

In a real-life application the subsystem survivability distributions would be
developed from knowledge or simulation of the responses of piece parts and
components to the specified environment. In this example we assume the existence
of the survivability distributions. In each case we have assumed that they are beta
probability distributions, but there is nothing magic about beta distributions nor are
there any restrictions on the type of distributions that can be employed, except that
the range of the random variable, survivability, which is a probability, must lie
between 0 and 1 (a nice feature of beta distributions). Beta distributions also have
the capability to adopt a multitude of forms by varying the two parameters which
can be directly related to the numbers of successes and failures in repeated trials.
Consequently, beta distributions can represent any number of real or perceived
distributions and thus find common utility in real-life models.

A beta density function with parameters "a" and "b" is defined by the
expression:

f(x) = kxa-1(1-x)b-1 0 < x < 1
= 0 elsewhere,

where k = (N(a + b)/v(a)P(b)) and r is the well-known Gamma function. The
mean and standard deviation are:
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p = a/(a + b);
j2 = ab/((a + b)2(a + b + 1)).

If parameters a and b are both 1, then the beta distribution reverts to the simple
uniform distribution over the unit interval. The parameters a and b can also be
related to the numbers of success and failures in n trials.

Table 1-1 records the GO type-kind numbers (Kaman Sciences Corproation, 1983,
1985) that identify the sub-elements, the beta parameters that identify the
postulated survivability distribution ascribed, the resultant means and variances of
each distribution, and the names of the associated sub-elements. Five such
distributions are postulated. No distribution is defined for the Command Center
because we postulate no effect upon its survivability due to the remote nuclear
detonation.

Table 1-1. Early NMD survivability distributions.

Type-Kind Beta Mean Var. Sub-Elements
Numbers Param

1-1 8,2 0.8000 0.0145 Brilliant Eyes, DSP, & GSTS

1-2 88,2 0.9778 0.0002 BMEWS & GBR

1-3 None .... Command Center-CINCSPACE

1-4 98,2 0.9800 0.0002 GPALS Operations Center

1-5 78,2 0.9750 0.0003 GBI Launch Site

1-6 18,2 0.9000 0.0043 Interceptors

The beta density functions and survivability (cumulative probability) distributions
for each of the five sets of parameters recorded above are depicted in Figures 1-3 to
1-12.

As noted above the survivability distributions of each of the six orbiting sensors
are postulated to be beta distributions with parameters 8,2. This might be
representative of the results of 8 tests, 7 successes and 1 failure, so parameter a = 7
+ 1 and parameter b = 1 + 1. Since at least four of these six sensors must remain
functional to perform the mission of detecting additional missile launches,
discriminating threats, providing data to guide interceptors, and assessing kills, this
logic is accommodated with a GO logic 4 out of 6 type 11 operator. While we have
assumed that the survivability distributions of all six sensors are identical, the
survivability of each is statistically independent of the others in the simulation.

Each of the succeeding early NMD system elements necessary for system
operation - the BMEWS system, the Command Center, GSTS, GPALS Operations
Center, GBR, and GBI Launch Site are modeled as shown in Figure 1-2 and their
operation and performance is logically linear. The single launch site launches one,
two, or three interceptors (the type 1-6 GO elements) according to the firing
doctrine producing "signals" 31, 32, and 33 (events) representing the performance
(survivability) of each of the three interceptors. These are final outputs from the

8



model. Their distributions will be identical since we have postulated identical
survivability distributions for them and will be developed as a function of all the
necessary sub-elements in the system. Hence, the interceptor survivability
distributions are not statistically independent because each depends upon all other
system elements to the same degree. If one or more of the interceptors were in-
flight and close to the detonation when it occurred, survivability would be much less
feasible than postulated. In that case different distributions would be required.

x

3 o0.75-

0

nL

U1~ 0.50o

1 0.25-

Cf 00 0.25 0.50 0.75 1.00 .0 0 0.25 0.50 0.75 t.00
SLRVIVFBILITY (X) SLRVIVABILITY (X)

Figure 1-3. Density function beta(S.2). Figure 1-4. Survivability distribution beta(8,2).
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Figure 1-11. Density function beta(98.2). Figure 1-12. Survivability distribution beta(98.2).
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In addition to the single interceptor outputs, we add additional logic to
determine the probability distributions for several events, i.e., for the survival of a
single interceptor assuming that only one is launched (signal 31); for 1 of 2 (signal
34) and for both interceptors (signal 35) assuming that two are launched; and for 1
of 3 (signal 41), 2 of 3 (signal 42), and all three interceptors (signal 43) assuming that
three are launched.

Because we do not have a general tool to perform these types of simulations, the
procedure employed to perform this simulation was to sample from each of the
postulated survivability distributions for system elements, then either take the
survivability estimates on each trial and hand-enter them into a GO data file and
process them using the GO software in accordance with the system model of
Figure 1-2 to derive system survivability estimates, or, alternatively, to write the
system logic equations by hand and code them to perform the simulation. Both
procedures are time-consuming, labor intensive, and probably impractical for
assessing large complex systems.

We used both procedures to insure that the model was correct, then ran 1000
simulations to develop the six system survivability distributions defined above, one
each for signals 31, 34, 35, 41, 42, and 43.

1.3.2 The Solution - Survivability Distributions And Confidence Functions.

The resultant survivability distributions are graphed in Figures 1-13, 1-14, and 1 -
15, Example Early NMD Survivability Distributions given that one, two, or three
interceptors were launched. The sample survivability distributions portray the
variability in the random variable "system survivability" for different events and
firing doctrines (numbers of interceptors launched).

The distribution for all three interceptors surviving, given that three were
launched is shown by the "all three interceptors" curve of Figure 1-15. This
distribution has a mean of 0.48 and standard deviation of 0.10. The distribution for
at least one of the three interceptors surviving, the "one of three interceptors" curve
of Figure 1-15 has mean of 0.66 and standard deviation of 0.11.

Having developed these early NMD survivability distributions by simulation, we
can use them to place confidence bounds on the probability of surviving a nuclear
detonation. This can be done directly from Figures 1-13 to 1-15, but we prefer to
invert the distributions and read confidence (1. - the cumulative probability) directly.
Hence, we plot the several confidence functions for these survivability distributions
in Figures 1-16, 1-17, and 1-18, example Early NMD Confidence Functions, given that
one, two, or three interceptors were launched.

Table 1-2, Example Early NMD Survivability Estimates And Bounds, records the
resultant parameters and bounds of all six distributions.
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Figure 1-13. Example early NMD survivability distributions -single interceptor launched.
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Figure 1-14. Example early NMD survivability distributions- two interceptors launched.
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Figure 1-17. Example early NMD confidence functions - two interceptors launched.
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Table 1-2. Example early NMD survivability estimates and bounds.

Case Mean S.D. 90% LCB 50% LCB

1ofi 0.593 0.11 0.44 0.60

1 of 2 0.652 0.11 0.50 0.67

2 of 2 0.533 0.11 0.39 0.54

1 of 3 0.663 0.11 0.50 0.67

2 of 3 0.640 0.11 0.49 0.66

3 of 3 0.499 0.10 0.36 0.48

From the functions in Figures 1-16 to 1-18 we state that we are 90% confident
that the survivability of a single interceptor given that only one was launched is
greater than or equal to 0.44; that we are 90% confident that the survivability of at
least one interceptor given that two were launched _> 0.50; and, that we are 90%
confident that the survivability of all three interceptors given that three were
launched > 0.36, etc. Of course, having the entire distributions we can make
confidence statements at other levels of confidence. For example, we can also state
that we are 50% confident that the survivability of a single interceptor (given that
only one was launched) a 0.60, of at least one interceptor surviving given that two
were launched _ 0.67, and that all three survive given that three were launched >
0.48. Obviously, the higher the confidence the lower the bound.

A principal objective in performing system-level survivability assessments will be
to improve survivability (i.e., move the distributions to the right) and to reduce
uncertainty (that is, make the curves more nearly perpendicular). To portray the
reduction of uncertainty we repeated the simulation above having eliminated all
uncertainties in the GSTS, giving it a survivability point estimate of 0.80 (the mean of
the former distribution). We portray the results in Figures 1-19 and 1-20. Figure 1-19
shows the new survivability distribution for a single interceptor and Figure 1-20
depicts the resultant confidence functions given that three interceptors were
launched. We record the various estimates and bounds for this excursion
in Table 1-3 which is comparable to Table 1-2 above.
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Figure 1-19. Example early NMD survivability distribution with uncertainties reduced -
single interceptor launched.
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21



Table 1-3. Example early NMD survivability estimates and bounds
with uncertainties reduced.

Case Mean S.D. 90% LCB 50% LCB

1 of 1 0.590 0.07 0.49 0.60

1 of 2 0.650 0.05 0.58 0.65

2 of 2 0.529 0.07 0.43 0.53

1 of 3 0.656 0.05 0.58 0.67

2 of 3 0.638 0.06 0.57 0.66

3 of 3 0.477 0.07 0.38 0.48

Note that for all practical purposes the means of the survivability distributions
have not changed, (any variation is due to sampling differences) but that the sample
standard deviations are consistently smaller than before, only half as large in some
cases. Because of the reduction in uncertainty the 90% LCBs on system-level surviv-
ability are also consistently higher than before, but there is essentially no change in
the 50% LCBs. Having the system model and the capability to repeatedly simulate
system performance permits many excursions to determine optimal ways to improve
system survivability and reduce its variability.

This example has presented the methodology that we propose be employed to
develop system-level survivability distributions and quantitative estimates with
associated confidence from similar information for subsystems, components, and
piece parts. The Monte Carlo simulation method is completely general, is applicable
at any level of complexity, and produces legitimate results - that is, there are no
necessary simplifying assumptions or truncations.

There are, however, two major difficulties in applying this method for a complex
system. The first is developing legitimate survivability distributions for the consti-
tuent elements of a system. This must be done from test data, from simulations
using validated codes that estimate damage and determine survivability, and by
using judgment about the effects upon components for the stressing scenarios of
interest. These survivability distributions for system elements will include the effects
of both systematic uncertainties and random errors.

The second major difficulty in applying the methodology is the present difficulty
in developing the models and performing the simulation. This second difficulty can
be overcome by developing generic software tools to accommodate this type of
analysis. We believe that this distributional approach to system survivability has
been made viable by orders of magnitude improvement in the speed and cost of
computer calculations over the past decade.
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APPENDIX A

PROBABILITY TUTORIAL

A.1 PRELIMINARY CONCEPTS.

The remainder of this report is devoted to a summary of some of the important
concepts of probability and statistics which are pertinent to the analysis of those
systems of concern here. Much of the material is of an elementary nature, but is
presented to provide a common vocabulary and understanding among readers, most
of whom can safely skim quite rapidly through the bulk of the text. We will avoid
the abstruse aspects of the material as much as possible so that few, if any, readers
will be either baffled or intimidated.

A. 1.1 Systems And Experiments.

The basic object of interest is a system by which we mean a collection of "things"
(the components of the system). A system is involved in some activity (experiment or
action) which produces one or more results (outcomes). An exhaustive and mutually
exclusive list of outcomes is called an outcome list or a sample space. For example,
the experiment of tossing a coin involves a system made up of a coin, a person to toss
the coin, and a surface on which the coin lands; the outcomes of interest are
whether the coin lands with "heads" or "tails" showing, the possible result of the
coin landing on its edge normally being ignored.

A component of a system may itself be another system, in which case it may be
referred to as a subsystem. In this manner a system may contain several nested layers
of subsystems. In the coin-tossing experiment, the tosser (the person) is a system
made up of several biological subsystems (nervous system, digestive system, etc.),
each of which is made up of other systems (brain, nerves, receptors, etc.)

A. 1.2 Outcomes And Events.

An experimental event is a collection of one or more possible outcomes of the
experiment. If we expand the coin-tossing experiment by simultaneously tossing
two coins -- say, a nickel and a dime -- then we could definea sample space
consisting of the four outcomes: "both heads," "both tails," "a nickel head and a
dime tail," and "a nickel tail and a dime head." ) he outcomes in a sample space are
referred to as "two heads," "at least one head," etc. Of course, the three events "no
heads," "one head," and "two heads" also constitute a sample space because they
are exhaustive (any experiment will have one of these outcomes) and they are
mutually exclusive (only one of them can occur for a given trial of the experiment).

A set of outcomes of an experiment may be classified as being either discrete or
continuous depending upon the range of values which can be taken. A precise
definition of these terms would take us far afield, but generally speaking an
outcome set is discrete if it consists of separated entities such as "head" and "tail" or
"1," "2," and "3." Any outcome set containing a finite number of members is
discrete, but sets with an infinite number of members -- such as the number of tosses
of a single coin before a head occurs -- are possible. A continuous set is essentially
one in which the outcomes can conceptually be measured to any degree of precision.
The continuous sets of interest to us are usually numerical intervals such as the set of
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all real numbers between zero and one. Every continuous set contains an infinite
number of members.

We will speak of an outcome as being discrete (continuous) if it is a member of a
set which is discrete (continuous).

A. 1.3 System Structure.

It is occasionally useful to classify a system according to its structural complexity:

* Series:
A system whose components are operationally connected in series, such as a

battery connected to a light bulb.

* Parallel:
A system whose components are connected in parallel, such as two batteries

hooked together in parallel so that either or both of the batteries will supply
power.

* Series/Parallel:
A combination of series and parallel subsystems, such as two batteries in

parallel connected to a light bulb.

* Complex:
None of the above, such as two batteries and two light bulbs hooked together

so that either battery can power either light bulb.

A. 1.4 System Models.

Our ultimate interest in a real-world system is how it actually performs. Systems
are sometimes available for experimental use and can be exercised as much as we
wish -- there is essentially no limit to how many times we can toss a penny. However,
most are not so accommodating: some do not even exist (a 1999 Toyota Celica or
Columbus' Santa Maria); some cost too much are are too dangerous to experiment
with (a space shuttle or a nuclear power plant); some self destruct when operated (a
nuclear warhead or a firecracker). To investigate and analyze the behavior of one of
these systems we are usually forced to resort to a model of the system rather than
the real thing.

Models come in numerous forms and share only the property of being a more or
less accurate representation of some of the properties of the actual system. The only
model which is 100% accurate and complete is the system itself, so results obtained
from any other model must be viewed with some skepticism and used with caution.

The selection of which system properties to include in a model depends primarily
upon the questions to be answered, but the availability of tools and materials for
both building and analyzing the model must also be considered.

As an example consider an automobile theft-prevention system which consists of
a battery, two sensors (either of which is able to trigger an alarm), and the alarm
device itself. What are some possible models?

* The sentence above that described the system is a verbal model and is quite
adequate for some purposes.
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"* We might use a camera or an artist to produce a pictorial model (useful for
advertising).

"* A full-scale mock-up might be useful to make sure the system will fit into the
automobile.

"* A schematic diagram showing how the components are connected together is
needed to indicate how the individual parts interact.

"* A wiring diagram to show how the system is hooked up to the car.

"* A logic model to analyze the operational logic to make sure that if all of the
components work properly, the system will perform as desired and to
investigate the consequences if one or more of the components fail.
Logic models can be constructed in many different ways; some possibilities
include:

ee Verbal:
"If the battery (B) is good and either or both of the sensors (S1 and S2)
operates properly and the alarm (A) is good, then the system is good,"

09 Symbolic (mathematical):
S = B and (S1 or S2) and A,

*. Event Table ( = "good," 0 = "bad") (see Table A-l),

0* Event Tree (This is simply a graphical representation of the event table; it is
a convenient tool with which to work when we attach probabilities to the
events) (see Figure A-i),

ee Fault Tree (this shows the ways in which the system can fail) (see

Figure A-2).

A.2 PROBABILITY.

The operation of most systems involves uncertainty. Thus, when we toss a con,
we are certain that it will come up either heads or tails, but are not certain which.
Probability and statistics are the mathematical sciences which attempt to define,
measure, and manipulate numerical measures of certainty or uncertainty.

The probability of an outcome of an experiment is a measure of the certainty
with which that outcome will occur when the experiment is performed -- that is,
when the system operates. The measure is made on a scale from zero to one where a
value of one means that the outcome is sure to occur and a measure of zero that it
never occurs (or, as we will see later, can be expected never to occur), The sum of the
probabilities of all members of a sample space is always unity.

It is fairly common to define the probability of an outcome as the relative fre-
quency (proportion of number of trials) or occurrence of that outcome in an infinite
number of trials. This is not a satisfactory operational definition because of the
infinite-number-of-trials requirement. Nevertheless, the statement suggests that
the observed relative frequency in a large number of trials should be at Feast close to
THE probability. Use of the mathematical theory of probability bears this out and
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Table A-1. Automobile theft prevention system
event table.

Battery Sensor 1 Sensor 2 Alarm System

0 0 0 0 0
0 0 0 1 0

0 0 0 0 0

0 0 1 1 0
0 1 0 0 0

0 1 0 1 0
0 0 1 0 0

0 - 0

1 0 0 0 0

0 0 0 1 0

o 0 1 0 0
o 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0
1 0 1 1 1

also provides some help in deciding what "large" and "close to" mean (we will see

some of this later on in this paper).
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o Fault Tree (this shows the ways in which the system can fail):

Figure A-1. Automobile theft prevention system event tree.

System bad

Battery Alarm Sensor#l Sensor#2
Bad Bad Bad Bad

Figure A-2. Automobile theft prevention system fault tree.
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A.2.1 Obtaining Probabilities.

There are several ways in which outcome probabilities are obtained:

* Assumption:
This is used in all theoretical studies. We simply say "if the probabilities of a

set of outcomes are such-and-such, then..." In this manner the large,
indispensable, and sometimes impenetrable body of probability theory has been
established.

* Symmetry:
Because the single-coin-tossing experiment has two outcomes and there does

not appear to be any reason why one should occur more frequently than the
other, we are usually willing to say that the phobability of each is 1/2. However, a
little thought suggests that the uncertainties here lie more in the tosser than the
coin. In fact, it seems quite likely that a Zossing machine could be built that
would always produce only one outcome, so the blithe assumption of symmetry
may be far from correct.

* Intuition (guessing guided by experience and/or education):
What is the probability that a tossed irregular polyhedron will land on a

certain face? What is the probability that you will die of brain cancer at the age
of 73? What is the probability that a stick of dynamite will explode when hit with
a sledge hammer?

Such probabilities as these may be extremely difficult to obtain, but frequently
we are in a situation that requires some kind of an answer. One way out is to hedge
a guess by saying, for example, "The answer is probably between 0.3 and 0.5." This
ofcourse introduces another unknown probability, but it seems to narrow things
down a bit, and if this statement comes from an "expert," we are much more likely
to accept it with a reasonable amount of confidence. And, if the expert is willing to
define "probably" as "about 0.95," we may even feel pretty good about it! This
approach is closely tied to Bayesian probability which will be discussed later in more
detail.

* System Testing:
Repeated trials of a system's operation is the only way to be sure that we are

sneaking up on the real probabilities of the system's outcomes. If for some
reason a sufficiently large number of trials is impossible, we are forced to turn to
some other approach.

0 System Model Testing:
When a system is relatively complex, it may be possible to obtain or estimate

probabilities associated with the system's components and then test a system
model involving the components to estimate system probabilities. However,
when this method is used, it is vital to remember that the results obtained apply
to the model itself and may or may not accurately represent the corresponding
features of the modeled system.

A.2.2 Random Variables And Probability Distributions.

When an experiment is performed, one and only one of the outcomes in the
sample space will occur. We are frequently concerned with how the total probability
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(1.0) is distributed over the various outcomes -- that is, what is the probability of
each possible outcome?

If there are a finite number of outcomes, a simple tabulation of the outcomes
and their probabilities is all that needs to be done. However, if the outcome set is
infinite in extent, a complete tabulation is impossible and some other device must be
used. This device is a random variable which is simply a variable whose value ranges
over some set of real numbers where each member of that set is associated with one
or possibly several outcomes (but no outcome is associated with more than one of
the real numbers). A random variable is called discrete if it is defined on a discrete
set of outcomes and continuous if the set is continuous.

For example, if we toss six coins simultaneously, we might associate with each
possible outcome (such as "HHTHTH") the number of heads (4). The value range of
the discrete random variable "NUMBER OF HEADS" is then the integer set
{0,1,2,3,4,5,6}. It is common practice to use an uppercase letter as the symbol for a
random variable. Thus, if we let N = "NUMBER OF HEADS", the question "What is
the probability of five heads?" can be written symbolically

Pr(N = 5) = ?

where "Pr" means "probability."

We now define two probability functions of a discrete random variable. The first
is the Probability Mass Function (PMF) which is defined by

PMFA(X) = Pr(A = x)

where x is a numerical variable on the value range of the random variable A.

The second function is the Cumulative Distribution Function (CDF) defined by

CDFA(x) = Pr(A < x)

where again the domain of x is the value range of A. Note that because a probability
is always non-negative, a CDF is a non-decreasing function.

The subscript on PMF and CDF is omitted if only one random variable is under
discussion or it is otherwise obvious which random variable is being considered.

Example A.2.2a:
A fair coin is tossed once. (The adjective "fair" is customarily used when we

invoke a symmetry definition of probability; in this case that means that we assume
that the probability of a head is the same as that for a tail and, consequently, each
must be 0.5.) Let N = number of heads." The value range for N is simply the set
{0,11 and we can readily tabulate the PMF and the CDF (see Table A-2) (any symbol
can be used for the dummy argument of the function; we use "x" in this example
and will use other symbols in other examples as the whim strikes us):

Note that the PMF entries must always sum to unity.
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Table A-2. Fair coin example
PMF and CDF.

x PMF(x) CDF(x)

0 0.5 0.5

1 0.5 1.0

1.0

Example A.2.2b:
Two fair coins are tossed. Let B = "number of heads." By symmetry there are

four equally likely outcomes which, letting the first letter indicate the result of one
coin and the second letter the result of the other, are HH, HT, TH, and TT. Note that
the second and third outcomes give the same number of heads (1) (see Table A-3).

TableA-3. Two fair coins
example PMF
and CDF.

y PMF(y) CDF(y)

0 0.25 0.25

1 0.50 0.75

2 0.25 1.00

1.00

Example A.2.2c:
A fair coin is tossed until a head occurs. Let C = "number of such tosses." Here

the value range of C is the infinite set of all positive integers. A complete table
cannot be constructed, but a partial one may be useful (Table A-4). Noting that the
event "C = x" requires x-1 tails followed by a head and assuming independence of
tosses (see below), the formula for the PMF, where t is the number of tosses, is
PMF(t) = (0.5)t,t = 1,2,3,....

Being a bit clever (or using a mathematical handbook) the formula for the CDF
can be found to be CDF(t) = 1 - (0.5)t. Thus CDF(10) = 1 - (0.5)10 = 1 - 1/1024 =
0.9990. The probability of C being greater than t is 1 - CDF(t), so the probability of
needing more than 10 tosses to get a head is very small -- about 0.001.

Example A.2.2d:
Consider a system that consists of a piece of cardboard on which a circle is drawn

and a pointed spinner is mounted at the center of the circle in such a manner that it
can freely revolve when flicked with a finger. The circle is divided into five equal
segments marked 2,3,5,7, and 11. Similar devices frequently appear with board
games made for the young at heart, and a roulette wheel or a Wheel of Fortune are
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Table A-4. Tossing fair coin
until head occurs
example PMF
and CDF.

t PMF(t) CDF(t)

1 0.5 0.5

2 0.25 0.75

3 0.125 0.875

4 0.0625 0.9375

1.0000

advanced versions of the same idea (these two have little fences to prevent the
spinner from landing on a boundary -- an endless source of childhood arguments).
The experiment consists of flicking the spinner and noting the segment where the
spinner point is located when the spinner stops. Let the random variable D be the
number associated with that segment.

Using symmetry, we will assume that the pointer has no preference for any
particular stopping point, and, consequently, each of the equal segments has a
probability of 0.2 of containing a stopping point. Table A-5 gives a tabulation of the
PMF and CDF for this example.

Table A-S. Spinner example
PMF and CDF.

s PMF(s) CDF(s)

2 0.2 0.2

3 0.2 0.4

5 0.2 0.6

7 0.2 0.8

11 0.2 1.0
1.0

It is clear that we can divide the circle in Example A.2.2.d in any manner we
choose -- that is, we can have as many segments as we wish and they can be of
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varying lengths if desired. Then, assuming a fair spinner, the probability associated
with any segment is just the proportion of the circumference occupied by that
segment. This is turn says that the probability behavior of any system with a discrete
set of outcomes can be, at least conceptually, modeled by a spinner system. There
are some practical difficulties involved if the number of outcomes is infinite as in
Example A.2.2.c, but in that case we might lump all of the outcomes with a value
above, say, 10 into a single segment with -- as we have seen -- a probability of about
0.001 andhave a good, but not perfect, model.

With this in mind, it is a small, but very significant, step to consider what happens
if we replace the segmented scale on the spinner with a continuous one -- for
example, a uniform scale from 0 to 10 (the 0 and 10 being located at the same point).

First, for example, we might ask "What is the probability that the spinner will
stop at exactly 2.5?" To expedite matters, let the value of the continuous random
variable S be the number on the spinner scale where the spinner stops. Then the
question becomes

Pr(S = 2.5) = ?

By symmetry we must agree that each point on the scale -- and hence each real
number between 0 and 10 -- is equally likely to occur; but as there are an infinite
number of such points, the answer must be 1/co = 0. On the other hand some
number will occur for each spin, so we are now faced with the situation -- noted
earlier -- where an outcome with zero probability can indeed happen. In any event
there is no hope of finding a PMF for any continuous system.

However, if we change our question to

Pr(S < 2.5) =

We are talking about an interval rather than a point. In this case the interval is
the set of all numbers between 0 and 2.5, and because that is one quarter of the
scale, the answer is 0.25. Consequently, although we are unable to find a PMF, we
can find a CDF! In fact, a little thought tells us that for this spinner the CDF formula
is

CDF(x) = x/10, 0 < x 5 10.

The careful reader will have noted that we have given the point where 0 and 10
coincide the value of 10 -- that is, 0 is not in the value range but 10 is. The fact that a
single point has a zero probability of occurring indicates that the other way around
would be perfectly satisfactory, but this is the conventional way to do it.

The graph of this CDF is just a straight line segment going from the origin (0,0) to
the point (10,1), and -- like any CDF -- is a non-negative, non-decreasing function.
So, putting our calculus glasses on, we observe that this CDF could be obtained by
integrating some non-negative function whose domain includes the interval [0,11 --
that is, there is some function f such that

x

0 f(t)dt = x/10, 0 <x < 10.
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But the Fundamental Theorem of Calculus says that if the integral in this
equation is differentiated, the result is simply f(x). So if we differentiate both sides
of the above equation, we get

f(x) = d/dx (x/10)
= 1/10

whose graph is a horizontal line segment.

This function is called the Probability Density Function of the random variable (S
in this example) and is denoted by PDFs(x) -- that is,

PDFs(x) = 1/10, 0 < x 5 10.

Note that, for example, we can find Pr(3 5 S 5 7) by subtracting Pr(S s 3) from
Pr(S : 7). Generally,

Pr(a s S : b) = Pr(S s b) - Pr(S s a)
= CDFs(b) -CDFs(a)

b
= fPDFs(t)dt

= area under graph of PDFs between a and b

We may replace the uniform scale on the circle of our spinner board by any scale
we wish (the physical length remains the same of course): shorter (1 to 4), longer (-
1000 to 1000), or -- more interestingly -- non-uniform (think of writing a scale on a
rubber band and then stretching or compressing the band in various ways as long as
the total length remains fixed. For example, if we took our scale from 0 to 10,
stretched the middle and compressed the ends, we would increase the probability of
obtaining numbers near 5 and decrease it for numbers near 0 and 10; the graph of
the PDF would then be humped up in the middle and might (or might not) go to
zero at the ends -- in any event the area under the curve would remain unity.

By stretching our minds as well as the rubber band, the scale can include infinity
(®) on either or both of the ends of the scale. With this provision, a spinner can be
constructed to model the probability of any random variable.

The term random sample will be encountered frequently in this paper. A random
sample of size n is simply a set of n observed values of a random variable. For
example, if we have a spinner board for the random variable, the numbers obtained
by flicking the spinner n times make up a random sample.

There are different notations (and sometimes different names) in common use
for the various probability functions. In particular -- and because mathematicians
have not been accustomed to the use of a multiple-letter name for a variable -- the
cumulative distribution function is frequently symbolized by a single upper case
letter and the corresponding density or mass function by the same letter in lower
case (the random variable involved may or may not be attached as a subscript).

A.2.3 Distribution Measures.

There are many numerical measures associated with a random variable which
provide information about the nature of its probability distribution.
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The most important of these are defined as expected values of certain functions
of the random variable. An expected value is simply a weighted average of all of the
possible values of such a function, where the weight applied to a function value is
the probability (for a discrete random variable) or the density (for a continuous one)
associated with the value of the random variable. Let R be a random variable and
denote its value range by VR. Let E(f(R)) denote the expected value of the function
f(R). Then, for discrete R, the expected value of f(R) is

E(f(R)) =D(t) x PMFR(t)

and for continuous R, the expected value is

E(f(R)) =ff(t) x PDFR(t) dt.

If f(R) = R, the expected value is known as the mean of R. It is a measure of the
average value of R or the center of the distribution and is symbolized by E(R) or PR.
Other common measures of the average include the median (the value for which the
CDF = 0.5) and the mode (the value with the greatest probability or density).

If f(R) = (R - PR) 2 , the expected value is called the variance of R and is a measure
of variability or spread or dispersion of the distribution. It is symbolized by OR2 or
Var(R). The positive square root of the variance is called the standard deviation and
is symbolized by OR or SD(R). Another common measure of the variability is the
range (the difference between the highest and lowest values of R).

A.2.4 Distribution Parameters.

We have seen that the formula

PDFR(t) = 1/10, 0 <t ý 10,

defines a uniformly distributed random variable on the interval (0,10). If we replace
the "10" by the symbol "b", the resulting formula

PDFR(t) = 1/b, O<tsb

b>0

defines a class of uniformly distributed random variables, and b is called a parameter
of the distribution. Note that the allowable range for a parameter should be
explicitly stated.

In many practical problems we make the assumption that a distribution belongs
to a certain class which is defined by one or more parameters and then attempt to
find or estimate the values of the parameters and hence obtain the specific
distribution associated with our specific problem.

In some cases a distribution parameter is also a distribution measure (in the
example above the parameter b happens to be the range of R). It is usually possible
to give explicit formulas for at least some of the distribution measures in terms of
the parameters, but this cannot always be done.
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We list below the probability mass or density functions of several commonly
encountered random variable distribution classes and the formulas for the mean and
variance of the random variable. In all cases R is the random variable name, and the
parameters are indicated by either distribution measure symbols or just lower case
letters (the letter "x" will be used as the argument of the PMF or PDF and is not a
parameter):

Binomial (discrete):

PMF(x) = n!/(x!(n-x)!)px(1-p)(n-x), x = 0,1,2,...,n

0 < p < 1; n = 1,2,3,...

p = np; o2 = np(1-p)

For example, R = the number of successes in n trials of an experiment whose two
outcomes are "success" and "failure." The other parameter, p, is the probability of a
success on a single trial. If n = 1, the resulting distribution iL called a Bernoulli
distribution -- e.g., tossing a single coin once.

Normal (or Gaussian) (continuous):

PDF(x) = (l/(ov2-Fn)exp(-((x-p) 2)/2o 2 ), -,o< x < 0

This is the most well-studied and frequently used continuous probability
distribution, primarily because it is a limiting form of many other distributions and
consequently in many situations serves as a good approximation.

The graph of the PDF of a normal distribution is the well-known "bell-shaped"
curve which is symmetric about its mean. The standard normal distribution is one
whose mean is zero and whose variance (and standard deviation) is unity. This
distribution has been extensively tabulated because the probability behavior of any
normal random variable can be obtained from such a table.

Beta (continuous):

PDF(x) = (a + b + 1)!/((a-1)!(b-1)!) x(a-1)(1-x)(b-1)
0<x<1
a > 0; b > 0 (usually both a and b are integers)
p = aI(a+b); 02 = ab/((a+b)2(a+b+l))

This distribution is most often encountered in Bayesian probability and statistics.
Note that if a = b = 1, the distribution becomes the uniform distribution on the unit
interval.

Uniform (continuous):

PDF(x) = 1I(h-1), I1 xs h

p = (1+ h)/2; o2 = (h-I)2/12.
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This is the simplest of all continuous distributions. The graph of its PDF is a
horizontal line segment 1/(h-1) units above the x-axis and extending from x = I to x
= h. The CDF is a straight line segment joining the points (1,0) and(h,1).

A.2.5 Joint Distributions.

The outcomes of an experiment may involve more than one random variable --
for example, if we select a member of Congress at random, we could define the
random variable H = height of the person selected and W = his or her weight (and
many others if we wished). We could study the behavior of each random variable
separately by simply ignoring the others, or we might be interested in their joint
behavior.

To illustrate the ideas involved with joint distributions let an experiment be
tossing a fair coin three times. Letting H denote a head and T a tail and writing
down the three results in sequence, we see that there are eight possible outcomes,
each (by symmetry) having a probability of 1/8. Define two random variables: N =
number of heads (0,1,2, or 3) and R = the length of the longest run, where a run is a
set of successive flips having the same face (1,2,3). Table A-6 lists the possible
outcomes, their probabilities, and the associated values of N and R.

Table A-6. Outcomes and probabilities for joint
distribution of N & R.

Outcome Probability N R

hhh 1/8 3 3

hht 1/8 2 2

hth 1/8 2 1

htt 1/8 1 2

thh 1/8 2 2

tht 1/8 1 1

tth 1/8 1 2
ttt 1/8 0 3

1.0

Using this table we can immediately construct the individual PMFs for N and R
(Tables A-7 and A-8) and the joint PMF of N and R together (Table A-9).

The table entries are the joint probabilities of N and R and the notation PMFNR is
defined to be

PMFN,R = Pr(N = n and R = r).
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Table A-7. PMFI.

n Pr(N = n)

0 1/8

1 3/8

2 3/8

3 1/8

1.0

Table A-S. PMFR.

r Pr(R = r)
1 2/8

2 4/8
3 2/8

1.0

Table A-9. Joint PMFN.R.

r

1 2 3

0 0 0 1/8

n 1 1/8 2/8 0

2 1/8 2/8 0

3 0 0 1/8

Note that if the entries are summed across each row and then down each column,
the results are identical to the individual PMFs of N and R; when they are obtainable
in this manner, these PMFs are referred to as marginal distributions.

A.2.6 Conditional Distributions.

There are situations where we are interested in only some of the outcomes of an
experiment rather than all of them. The set of these outcomes is called the
conditioning set or event. We then simply ignore those outcomes which are not in
the conditioning set and go on from there. For example, in the 3-coin experiment

A-15



just discussed assume we are interested only in those outcomes which contain
exactly one head. Looking at Table A-6, the members of the conditioning set are
seen to be htt, tht, and tth. These are still equally likely, and so here each has a
probability of 1/3. Now, what is the probability distribution of the number of runs
given that the outcome is in the conditioning set? We can symbolize this question by

Pr(R=rlN=1) =

where the vertical bar separating the event of interest from the conditioning
event is read "given." Looking at the conditioning set and remembering each
outcome there has a probability of 1/3, the answers to the question are:

Pr(R = 1 N = 1) = 1/3,
Pr(R=2 N = 1) = 2/3,
Pr(R=3 N=1) = O.

which defines the required conditional probability mass function.

The conditional PMF can be obtained directly from the unconditional joint PMF
of N and R (Table A-9) rather than the table of outcomes (Table A-6). We first
observe that a conditioning event shrinks the outcome set to just that event (in our
example to the row for n = 1). The sum of the original probabilities in the
conditioning event is 1/8 + 2/8 + 0 = 3/8 [which of course is Pr(N = 1)]. However, in
the conditional distribution the sum of the probabilities must equal 1. The most
reasonable way of doing this is to multiply each of the unconditional probabilities by
some constant k so that the new sum is unity. Therefore, we want to find k so that

(1/8)k + (2/8)k + (O)k = 1

which says

k = 1/(1/8 + 2/8 + 0)
= 1/(3/8)
= 1/Pr(N = 1).

In short,

Pr(R = rIN = 1) = Pr(R = randN = 1)/Pr(N = 1).

A.2.7 Statistical Independence.

The basic idea of statistical independence [usually just ("independence"])
between two outcomes is that they do not influence each other. Thus, when tossing
a coin twice, what happens on the first toss presumably does not influence what
happens on the second, and so we are inclined to postulate independence between
the outcomes of the two different tosses. More precisely, and using the concept of
conditional probability, the two random variables S and T are defined to be
independent if and only if

Pr(S = s I T = t) = Pr(S = s)

for all possible values of s and t.
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An immediate consequence of this definition is the theorem that S and Tare

independent if and only if

Pr(S = sandT = t) = Pr(S = s) xPr(T = t)

for all possible values of s and t. (This is sometimes used as the definition, in which
case our definition becomes a theorem.) The theorem can be extended to more than
two random variables.

In the 3-coin example we have found that Pr(R = 1) = 2/8 and Pr(R = 1IN = 1) =
1/3, so by the definition, R and N are not independent (and are said to be
dependent). The theorem could also be used by noting that Pr(R = 1 and N = 1) =
1/8 which does not equal Pr(R = 1) x Pr(N = 1) = 2/8 x 3/8 = 6/64.

The theorem in effect says that R and N are independent if and only if each entry
in the joint PMF table is equal to the product of the row and column totals
associated with the entry(those totals of course define the individual PMFs for R and
N).

The most important use of independence in both theory and practice is that it
allows us to calculate the probability of the joint behavior of two or more
independent random variables by using just the individual distributions. It is very
difficult to prove that independence does exist, but, in the interests of simplicity or
because of the paucity of data, it is always tempting to postulate that it does.
Caution is urged!

All of the ideas discussed in this and the earlier two sections extend to continuous
as well as discrete random variables by replacing PMFs with PDFs and summations
with integrals.

A.2.8 Functions of Random Variables.

If we know something about a random variable T, can we say anything about a
random variable S which is a mathematical function of T such as S = 3T + 4 or S =
sin[log(T)I? The answer is a resounding "yes" in many cases of interest and a
tentative "maybe" in others. We state below a few of the cases of particular
importance which will be used later on. The proofs of these assertions are generally
straightforward, but in the interests of brevity will be omitted.

" IffSisa linear function ofT(S = aT + b for anya and b),then ps = apT + b
and 0s 2 = a 2 oT2 .

" If R = aU + bV, then PR = apu + bpv.
If in addition U and V are independent, then

OR2 = a 20U 2 + b20V2

and if U and V are each normally distributed, R will be also.

A useful verbal statement of the case where a = b = 1 is: if U and V are
independent random variables, then the mean of their sum is the sum of their means
and the variance of their sum is the sum of their variances.
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e When doing computer simulations which involve random variables it is usually
necessary to select a random sample from some given probability distribution.
If the distribution is continuous, we can select a value of such a random
variable as follows:

Let FT denote the CDF of the distribution from which we wish to sample -- that is,
FT(X) = Pr(T 5 x).

Let FT' be the inverse of FT -- that is, if y = FT(X), then x = FT'(y).

Let U be a uniformly distributed random variable on the unit interval (PDFu(x) = 1, 0
, x s 1). Most computer programming languages have a random number
generator which samples from such a distribution.

Let W be a random variable such that W = FT'(U).

Then W has the same probability distribution as T.

The only problem with this procedure is finding the inverse function, but
adequate approximations have been developed for all common distributions.

* The Central Limit Theorem says that the CDF of the sum of the n members of a
random sample (n independent and identically distributed random variables)
approaches the CDF of a normal distribution as n gets larger regardless of the
CDF of the parent distribution of the random sample. This theorem is
extremely useful because it permits us to get good answers to many questions
by using a normal as the approximating distribution.

A.2.9 Bayesian Probability.

A Bayesian is a person who believes that any quantity whose value he does not
know is a random variable and that it is possible to express his current knowledge
about such a random variable in the form of a PDF or PMF. Then, as additional
knowledge becomes available he alters the distribution to accommodate the new
information.

There has been much discussion, debate, and dissension between Bayesians and
Classicists (non-Bayesians) over years, but the Bayesian philosophy has established
itself as a respectable approach to many problems. A. W. Drake said in his 1967
textbook Fundamentals of Applied Probability Theory:

"The Bayesian approach represents a significant departure from the more
conservative classical techniques of statistical analysis. Classical techniques are often
particularly appropriate for purely scientific investigations and for matters involving
large samples. Classical procedures attempt to require the least severe possible
assumptive structure on the part of the analyst. Bayesian analysis involves a more
specific assumptive structure and is often described as being decision-oriented.
Some of the most productive applications of the Bayesian approach are found in
situations where prior convictions and a relatively small amount of experimentation
must be combined in a rational manner to make decisions among alternative future
courses of action."
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That statement strongly suggests that when dealing with large-scale systems,
which of necessity are based on scanty amounts of firm data, a Bayesian posture is
indicated. We agree with this viewpoint and will use it freely in later sections.

A.3 PARAMETER ESTIMATION.

One of the major problems of statistical inference is that of estimating the value
of some random variable measure, the mean and variance being of particular
interest because taken together they usually provide a good idea of the overall
probabilistic behavior of the random variable. Both a point estimate (a single value
estimate) and an interval estimate which has some measure of certainty associated
with it will be discussed in the following sections.

A.3.1 The Blood Cholesterol Example.

Assume that I wish to determine my blood cholesterol level (BCL). The laboratory
where I go has a testing machine, but it has been found to produce somewhat erratic
results. In light of this variability how can I obtain a reasonably good estimate of my
BCL?

Let the result of a test made by the machine be denoted by the random variable C
with mean PM and variance UM2 . The machine produces answers to only three
decimal places which says that C is a discrete random variable, but it seems quite
reasonable to assume that C is continuous as this will greatly simplify both the
theoretical and computational aspects of the problem.

The more or less obvious approach to get a point estimate of BCL is to have the
test repeated several times and then calculate an average of the resulting values.
There are numerous averages one can use, but the sample mean (the sum of the
values divided by the number of thent) is the most commonly used one and can be
shown to have many good statistical properties.

Most people would agree that the larger n is, the better the final estimate will be
-- that is, the closer it will probably be to the real BCL value. To investigate this
matter we need to consider what might happen if we repeated this experiment
many times and looked at the distribution of the resulting sample means.
Symbolically, let the random variable M denote the mean of a random sample of size
n. What can we say about the probability behavior of M?

M is a linear function of the sample values of C, and it follows that PM = pc and
oM2 = oC2/n. Therefore, regardless of the size of n, the mean of M is equal to the
mean of C. However the variance of M gets smaller than that of C as n gets larger,
and because the variance is a measure of the spread of the distribution, the
distribution shrinks down around PM. This behavior is known as the Law of Large
Numbers and says that our intuition mentioned above was indeed correct.

Our ultimate interest is of course in the value of BCL, and it is pertinent to
wonder if pM (which is also pc) is the same thing as BCL. The answer is that we will
assume it is, which really means that we are assuming that the machine has been
properly calibrated so that it has no bias. Unless a more accurate, and preferably
more precise, measuring device is available to calibrate our machine, any bias would
be difficult to detect and impossible to measure.
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A.3.2 Probability Intervals.

The Central Limit Theorem discussed earlier says that the CDF of M approaches
normality as n gets larger. In fact, it can be shown that the normal approximation
gives very good answers for quite modest sample sizes -- say, 20 or even smaller in
some cases. So, let us assume that M is actually normally distributed and see what
can be said about probability statements concerning M. Let's start with

Pr(M < x) = ?

Recalling the definition of a CDF, our question can be restated as

CDFM(x) = ?

Because M is normally distributed (by assumption), we need to evaluate the CDF
of a normal random variable. This can be easily done if we change the question into
one involving a standard normal random variable Z. The required transformation is

Z = (M-PM)/OM.

To see how this works, start with a probability statement for Z:

Pr(Z _< 2.576) = 0.99

where the "2.576" and the "0.99" are obtained from a table of the CDF of Z. Making
the transformation to M, we get

Pr((M - pM)/mM <_ 2.576) = 0.99

which after a little algebraic manipulation and remembering that OM is positive
becomes

Pr(M < PM + 2 . 5 7 6 aM) = 0.99.

(Instead of the 0.99 we could have chosen any probability and then found in the
table a number corresponding to the 2.576 -- for example, 1.96 for 0.975, 1.645 for
0.95, 0.0 for 0.50, and -2.576 for 0.01.)

We see that, although our interest at this time is in PM, the event whose
probability is 0.99 involves both PM and OM. To take care of oc we will temporarily
assume that it equals 10 (that ac = 10 could have been estimated from earlier
experience with the machine or with similar machines) and consequently OM = 10/

v0n. The probability statement now becomes

Pr(M !ý PM + 25.76/Vn) = 0.99

This statement can be read as

(-a,, PM + 25.76A/r) is a 99% probability interval for M.

Because one end of the interval is -o, it is called a one-sided interval. To get a
two-sided interval, we could have started with the statement

Pr(-2.576 < Z _ 2.576) = 0.98
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which says that (-2.576, 2.576) is a 98% two-sided probability interval for Z. Then

going through the manipulations used above we would arrive at

Pr(pM - 25.76/M:T_ M < pM + 25.76/vfT) = 0.98

which says that (PM - 25.76/vt, PM + 25.76/Vf) is a 98% probability interval for M.

This and similar statements are useful to study the relationships between the
sample size, the precision of the sample mean (one-half of the width of the two-
sided probability interval), and the probability associated with that precision. Table
A-10 shows a few cases:

Table A-10. Relationship between sample size and

the precision of the sample mean.

Sample Size Precision Probability

(n)

25 5.15 0.98

25 3.29 0.90

100 2.58 0.98

100 1.65 0.90

Our assumption that OM = 10 is not required because using the values of a
random sample we can estimate uM and then use a table of the Student's t
distribution instead of the standard normal. There is a different Student's t
distribution for each value of n, but it turns out that for sample sizes above 40 or so,
the standard normal adequately approximates the Student's t.

A.3.3 Confidence Intervals.

The probability intervals we have constructed tell us where we can expect the
sample mean to fall with respect to the unknown distribution mean which is
important information when an experiment is being planned. The next question is,
"Can these intervals tell us anything about where the unknown distribution mean is
after we have actually obtained a random sample and calculated the value of the
sample mean?"

Returning to the BCL example and denoting the observed value of a random
variable by the corresponding lower case letter, we ask "What can the probability
intervals tell us about the location of pc after we have obtained m, the observed
value of M?" With n = 25 and remembering that pc = PM, we have

Pr(pC- 5.15 ,M < pc + 5.15) = 0.98

which can be interpreted as saying that if we were to obtain many random samples
of size n, calculate the sample mean m, then the statement
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pC- 5.15 g mr lpC + 5.15

would be true in about 98% of the cases and false in about 2% of them. The
statement can be manipulated to get

m-5.15spC sm + 5.15

and it would still be true in about 98% of the cases. Thus, for an observed value of m
the interval (m - 5.15, m + 5.15) either does or does not contain pc, but because 98%
of such intervals would include pc, we call the interval a 98% confidence interval for
PC.

In short, a probability interval is associated with our certainty that before an
experiment has occurred an event will happen, and a confidence interval is
associated with our certainty that after the experiment has taken place an event did
occur.

A.3.4 The Bayesian Viewpoint.

Because a true Bayesian views all unknowns as random variables, he will not
accept the analysis we did in obtaining a confidence interval because PC was treated
as an unknown constant rather than as a random variable. For him one approach
would be to assume some probability distribution for BCL. Then working with the
joint distribution of BCL and C, he would determine how the results of doing n tests
alters the BCL distribution. (The BCL distribution before the experiment is called the
prior distribution and the modified one the posterior distribution.) If desired, the
posterior distribution could then be used to obtain probability intervals for BCL.
(Instead of just probability, one of the adjectives Baye's probability, Baye's
confidence, and simply Baye's is frequently used to emphasize the Bayesian nature
of the interval.)

Of course, even a Bayesian has to start somewhere. If he knew absolutely
nothing about either the machine or the possible values of BCL, he might well simply
collect a sample of results and choose some probability distribution which fits the
sample in one way or another. This would then become the prior distribution for
future experiments or simply used to make statements about BCL which reflect the
current state of knowledge.

A.3.5 A GoodlBad Example.

A commonly encountered problem is one in which we need to estimate the
probability that a system is "good" (successful, survivable, OK, etc.). The system may
be a single component (a coin to be tossed) or a highly complex system (the NMD
example discussed in Section 1.3). In any event our interest is in whether, when the
system operates, the result is good or bad (not good).

Basically we are dealing with an experiment which has only two outcomes, one of
which we will call "good. There is some unknown probability -- say, p -- that a good
outcome will occur. Our problem is to estimate p. It is convenient to define a
random variable R whose values are 1 if "good" occurs and 0 otherwise. R then has a
Bernoulli distribution which, as mentioned in Section A.2.3, is a special case of the
binomial distribution with the parameter n equal to 1.
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A point estimate of p can be obtained by repeating the experiment a number of
times -- say, n -- and counting the number of successes -- say, s. A point estimate of p
is then given by the proportion of successes in the sample -- that is, s/n.

To find a classical confidence interval for p we need some information about the
probability behavior of S, the random variable whose value is the number of
successes obtained in the n trials of the experiment. S has a binomial distribution, so
its mean is np and its variance is np(1-p), Because S is discrete, the calculation of
exact confidence limits is difficult. Tables and graphs are available for some values
of n. Figure A-3 shows such a graph for finding 99% confidence intervals for p; on it
we see that if we had 80 successes in 100 trials, a 99% confidence interval for p is
(0.63, 0.90). For large n we can invoke the Central Limit Theorem and use a normal
approximation of the binomial distribution similar to the way it was done in Section
A.3.2.

(Confidence coefficient .99)

0.00.1

%-/ , / t', ".//• '.,'/

0 0.4 0 o.3 04 0/ 0.7 0.8 03 1.

Scae' of I// ,0 .3 1' , 0". 1 1

o a~l 0.2 03 0.4 0.5 0.6 0.7 02 • ~
Scale of x/n

Figure A-3. Confidence limits for proportions.

For a Bayesian approach, the use of Beta distributions is convenient because the
range of a Beta random variable is that of a probability -- [0,11 (because our
unknown probability is now a random variable rather than a constant, we will
denote by P rather than p). It can be shown that if one starts with a Beta prior
distribution for P with parameters a and b and then in n experimental trials obtains s
successes and f failures, then the posterior distribution of P is still a Beta, but with
parameters a + s and b + f. Graphs of the PDFs and CDFs of several Beta
distributions are shown in Section 1.3.
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The "I-don't-have-the-vaguest-idea" prior distribution is a Beta with a = 1 and
b = 1 which happens to also be a uniform distribution with I = 0 and h = 1. As
Bayesians occasionally point out to their recalcitrant classical colleagues, in some
ways using this prior is essentially what a classicist does all the time even though the
nature of the experiment strongly suggests a more restricted range. For example,
when tossing a coin to estimate the probability of a head, we would be surprised if
the value of the estimate was very far from 1/2; consequently, the choice of the [0,1]
uniform as a prior distribution seems a bit bizarre.

For some purposes, uniform distributions defined on subintervals of [0,1] make
useful prior distributions. For example, the uniform on [0.4, 0.61 might be a good
"lt's-pretty-close-to-l/2" prior for coin tossing. Its simplicity makes it easier to select
than a Beta and well suited for illustrative examples (as we will see in Section A.4).

A.4 ANALYSIS OF SYSTEMS.

To illustrate in some detail the analysis of good/bad systems, we will consider two
simple examples: a two-component series system and a two-component parallel
system. In each case the components are good/bad, and our problem is to
investigate the probability of success of each system. We assume that each system is
not testable. Consequently, any information about the system success must come
from knowledge of the individual components.

Table A-1 1, Simple Series and Parallel Systems Event Table, defines the logical
structure of the two systems. The two components are denoted by C and D (we will
use the same ones for both systems), the systems by S (Series) and L (parallel), and the
system or component states by g (good) and b (bad).

Table A-11. Simple series and
parallel systems
event table.

Component System
Events Events

C D S L

g g g g

g b b g

b g b g

b b b b

We will symbolize the event "C is good" by Cg and similarly for the other ones.
Our ultimate interest is in what can be said about the probability that S is good --
Pr(Sg) -- and the probability that L is good -- Pr(Lg). These probabilities are either
unknown constants or random variables with unknown distributions, depending
whether we are talking Classic or Bayesian.
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A.4.1 System Probability Formulas.

What we are searching for here is a formula or some other algorithm that gives
the values of the success probability of each system in terms of the success
probability of the components -- that is, Sg and Lg each in terms of Cg and Dg.
Because of the simplicity of the systems, formulas are quite easy to obtain by starting
with Event Table A-11.

For the series system the only outcome that produces Sg is the one in which both

C and D are good. Therefore,

Sg = Cg and Dg

and so

Pr(Sg) = Pr(Cg and Lg)
= Pr(Cg) x Pr(DglCg).

If we have no specific knowledge of the joint behavior of C and D and have no
suspicion that their probabilistic behaviors are not independent, we will assume
independence and get

Pr(Sg) = Pr(Cg) x Pr(Dg)

We see from the event table that the parallel system is good if any of the top
three events in the table occur. Consequently,

Pr(Lg) = Pr[(Cg and Dg) or (Cg and Db) or (Cb and Dg)]

which, because the three "and" events are mutually exclusive, becomes

Pr(Lg) = Pr(Cg and Dg) + Pr(Cg and Db) + Pr(Cb and Dg)

and, still assuming independence

Pr(Lg) = Pr(Cg) x Pr(Dg) + Pr(Cg) x Pr(Db)
+ Pr(Cb) x Pr(Dg)

This formula can be simplified by replacing Pr(Cb) by 1 - Pr(Cg) and Pr(Db) by 1 -
Pr(Dg). Doing this, we can reduce the formula to

Pr(Lg) = Pr(Cg) + Pr(Dg) - Pr(Cg) x Pr(Dg).

(There are several other ways of obtaining this formula, but we won't belabor
the point.)

Explicit formulas for system probabilities are very nice to have but for most large
and complex systems are extremely difficult to obtain. Fortunately, computer power
and the availability of appropriate programs have reduced the need for formulas.

We observe that we could have added another column to the event table that
would contain the probability associated with that row -- for example, the entry for
the first row would be Pr(Cg and Dg) or, assuming independence, Pr(Cg) x Pr(Dg).
Then it would be the simple matter of just adding the appropriate entries to get the
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required system probabilities. A more pleasing presentation of this idea is made by
using the event tree in Figure A-4 rather than the event table. In addition to a few
obvious presentation changes, we have symbolized Pr(Cg) by "c" and Pr(Cb) by "1-c"
(and similarly for other probabilities) and have written them on the "twigs" which
connect the events. With this, the probability for each "branch" is simply the
roduct of the probabilities written on the twigs belonging to the branch. The
ranches which produce the events Sg and Lg are marked with asterisks.

-- Branch-
Probability S

- --------- ___ c(l-d)

Cb

Figure A-4. Simple series and parallel systems event tree.

The most interesting thing about an event tree is that the idea is perfectly
general and can be used with any system each of whose components have a finite
number of outcomes. of course, when many components are involved, the tree
becomes quite unmanageable for most people, but there are existing computer
programs that, by various methods, can handle systems with several hundreds or
thousands of components. For example, GO does this by combining branches at
judicious points and pruning branches with very small probabilities.

A.4.2 Cornponen t Probabilities With Classical Estimates.

If point estimates of the success probabilities of components are available, then a
point estimate of the success probability of a system can be made by using a formula
as we did in Section A.4.1. However, the problem of estimating the variability of the
system point estimates using estimates of the component probability variabilities is
almost always difficult, and the results are usually less than satisfying because of the
need for simplifying assumptions. For certain types of system structures, reasonable
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methods have been developed over the years, but for others -- particularly large and
complex ones -- satisfactory procedures are generally not available. For this reason,
we feel that turning to the Bayesian viewpoint is appropriate, particularly in view of
the ready availability of the computing power needed for most Bayesian simulation
studies.

A.4.3 Component Probabilities: Bayesian Estimates.

A Baye's distribution for the probability of an event contains all the current
information about that probability. This information is fact-based as much as
possible, but also belief-based which allows the experience of experts to be reflected
in the distribution. Of course, because of different experiences, different experts
may come up with different distributions for the same probability even if they are
working with the same experimental test data, but if using the two distributions
produces significantly different results in a system study, at least the source of the
discrepancy is clear, and the matter can presumably be resolved by further tests
and/or discussions.

Although the Baye's distributions for the components of a system can
occasionally be mathematically manipulated to produce one for the system, this
generally is not possible. Consequently, Monte Carlo simulation is the method that
is commonly used. Conceptually, this amounts to obtaining a specific success
probability for each component by sampling from each of the component
distributions and then using a formula or other algorithm to compute the system
success probability. This process is repeated many times (usually several hundred at
least), and the resulting collection of system success probabilities serves as an
estimate of the actual system success probability distribution.

The sampling of a component distribution is done by the method described in
Section A.2.8 in which a random number from the [0,1] uniform distribution is
transformed into a random number from the desired distribution by using the
inverse of that distribution's CDF.

To illustrate the process for our two systems, we assume that pr(Cg) and Pr(Dg)
are random variables which we will denote by C and D. To keep the arithmetic at an
elementary level we will use uniform Baye s distributions. In particular, we assume
the PDFs of C and D are

PDFc(x) = 1/(0.6- 0.4) = 5, 0.4 ! x : 0.6,

PDFD(x) = 1/(0.8- 0.2) = 5/3, 0.2 s x ! 0.8,

which suggest that we are fairly sure that the values of C are close to 1/2 (the mean
of C) but less sure for the values of D. The CDF of each distribution is obtained by
integrating its PDF to give

CDFc(x) = 5x- 2, 0.4 s x s 0. 6,

CDFD(x) = (5x-1)/3, 0.2 5 x : 0.8,

and, finally, by some algebraic manipulation, the inverses of the CDFs are found to
be

CDFc'(y) = (y + 2)/5, 0 s y < 1,
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CDFD'(Y) = (3y + 1)/5, 0 ! y < 1.

All that we now need are the formulas for Pr(Sg) and Pr(Lg) which we obtained in
Section A.4.1 and a source of uniformly distributed random numbers between 0 and
1. Letting c and d represent sampled values of C and D, the formulas become

Pr(Sg) = cd and Pr(Lg) = c + d-cd.

There are many sources for the random numbers, but a computer is the common
provider today (we used a Tandy PC-6 pocket computer for the ones here).

Table A-1 2 shows the results of five samplings of each of the component
distributions and the computation of the systems' success probabilities. In the table r
is a random number value from the Tandy and s and I are the resulting sample values
of S = Pr(Sg) and L = Pr(Lg).

Table A-12. System estimates for simple series 9nd
parallel systems.

Component C Component D Systems

r c r d s I

.14 .43 .80 .68 .29 .82

.64 .53 .47 .49 .26 .76

.26 .45 .23 .34 .15 .64

.16 .43 .01 .21 .09 .55

.72 .54 .50 .50 .27 .77

We can now obtain an estimate of the Baye's CDF of S by ordering the s values
and estimating the value of CDFs(s) as the proportion of the sample size (5) of the
number of sample values less than or equal to s -- that is, the number of such values
divided by the sample size. The estimated CDF and its graph are shown in Figure A-5.

The two columns containing values of r in Table A-1 2 represent estimates of the
uniform Baye s distributions of C and D. Table A-1 3 tabulates the data for the
sample estimates of the CDFs of C,D,S, and L (note that the ordinates are the same
for each because the sample sizes are all the same), and Figure A-6 shows the graphs
of these functions. We have connected the points on each graph with straight line
segments instead of using the customary steps. The latter would be a correct
representation of a sample CDF itself, whereas the former is a better estimate of the
parent CDF.
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Figure A-4. SaMPle CDFS for C. D. S. and L (n m5).
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Figure A-7 shows the graphs of the sample CDFs of C,D,S, and L for a sample size
of 500 (the computing was done with a 45-line BASIC program on a 286
microcomputer). As mentioned earlier, graphs of the parent CDFs of C and D are
straight line segments, while those of S and L are unknown.

From these graphs we can obtain a variety of estimated probability intervals. For

example, the observation that

Pr(S < 0.15) = 0.10

gives us (0,0.15) as a 10% probability interval for S, and

Pr(0.15 : S 5 •0.40) = 0.80

gives (0.15, 0.40) as an 80% interval.

Noting that

Pr(S < 0.15) + Pr(S > 0.15) = 1.0

we have

Pr(S > 0.15) = 1.0 -0.10
= 0.90,

which says that (0.15, 1.0) is a 90% interval for S. The adjective "survivability" might
be applied to an interval of this kind, and flipping the CDF graph upside-down and
relabeling the vertical axis to read "Pr(S < s) gives us the graph of a survivability
function.

The observation that the CDF of S falls to the left of those of C and D and that the
CDF of L falls to the right is of considerable interest because it is an example of the
general statement that the probability performance of a series system is always
worse than that of its worst components, and that the performance of a parallel
system is always better than that of its best component.

A-31



1.0 1 1 1 1 1 J l i l

0.8-

0.7_
II-

x
'-0.6-
L

I- 0.5-
U

W0.4-

0.3- LEGEND
w A-C

0.2-

0.-s
0.81 1

0O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x
Figure A-7. Sample CDFs for C. D. S. and L (n , 500).

A-32



It is important to remember that the ordinates of the plotted points on graphs
such as these are estimates of the unknown CDF values. The word "estimate" will
frequently be missing when these matters are being discussed, and its omission can
easily mislead a person into assuming that he is seeing the truth rather than an
estimate of the truth.

This cautionary statement brings up the question of how close the estimate is to
the truth. We are certainly inclined to have more faith in Figure A-7 with n = 500
than in Figure A-6 with n = 5. Because the CDFs of C and D are known (we had to
use their inverses to do the sampling), we can see the actual differences between the
truth and the estimates for these cases. Figure A-8 shows the real CDF of D (labeled
n = =) and the sample estimates for both n = 5 and n = 500. A similar figure for C
would show better fits because C has a smaller variance than D.

We are, of course, unable to plot the real CDFs of S and L because we don't know
what they are. In a very few special cases such information could be obtained
analytically, but there is no general procedure for doing this.

There is, however, something which can be said. The use of the Kolmogorov (or
Kolmogorov-Smirnov) random variable allows us to place two curves around a
sample CDF such that there is a specified confidence that the band between these
curves contains the real CDF. The Kolmogorov random variable can be used for any
CDF and, consequently, is referred to as being "distribution free" or "non-
parametric". The values of the random variable (k) for a given sample size (n) and a
given confidence (c) can be found in tables in many statistics books, but it can be
computed accurately by the formula

k = [-In((1-c)/2)/(2n)](1/ 2)

The formula is approximate, but, except for very small sample values, gives
excellent results.
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The upper bound of the confidence band is constructed by adding the value of k
to the ordinate of each sample point, but replacing the new ordinate by 1 if it
exceeds 1, and then connecting the new points in the same way as the sample points
are connected. The lower bound is found in a similar manner by subtracting k from
the ordinate of the sample points. Some values of k that could be applied to our
examples are given in Table A-14. The table confirms the basic nature of all
confidence statements: the higher the confidence, the less there is to be confident
about.

Table A-14. The Kolmogorov-Smirnov random variable.

Sample Size

Confidence 5* 50 500 5000

0.90 0.518 0.173 0.055 0.017

0.95 0.563 0.192 0.061 0.019

0.99 0.669 0.230 0.073 0.023

* The entries for n = 5 are from tables; the formula gives
slightly higher values for small n.

A.4.4 Using CDF Estimates.

Having obtained an estimate of the CDF of the success probability of a system,
what can we do with it?

"* By itself the sample CDF can give us a good idea of what can be expected from
the system. If the variability is large, the CDF will be tilted more than if the
variability is small (Figure A-6 indicates that C has a much smaller variability
than D). A large variability indicates that there are some substantial
uncertainties that should be reduced if at all possible.

"* The CDF can be used as an accept/reject tool if the requirements for the system
have been stated in an appropriate form -- for example, the success
probability of the system must be at least 0.96 at a 90% confidence level.

"* If the system becomes a part of a larger one, the sample CDF can be used to

generate random values for use in the larger system.

A.4.5 Fragility Functions.

A component of a system is not always of the good/bad kind, but instead, may
produce an output that is a continuous random variable -- such as a force -- which
may cause a failure in a following component. The relationship between the value
of the random variable and the failure probability of the impacted component is
called a fragility function. For example, consider the experiment of dropping an egg
from a certain height onto a carpeted floor and seeing whether or not the egg
breaks. There is certainly some height below which an egg will always survive and
some height above which it never will. At some fixed height between these
extremes sometimes an egg will break and sometimes it won't, depending
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presumably on just how it lands and how well-built the egg was to start with. By
numerous tests, extensive analysis, and probably some graybeard intuition, a
fragility function can be determined and might look something like Figure A-9
which shows the graph of Pr(Egg Survives) versus the dropping height. (We could of
course turn the curve upside-down and relabel the vertical axis "Pr(Egg Breaks)."

1.0

Ld

• 0.5

0.0 ,
Dropping Height

FigureA-9. Example fragility function.

If we now have a system which involves lifting an egg and then dropping it, and
the height to which it is lifted is a random variable, we can simulate the system
performance by sampling the height distribution and using the fragility function to
determine the resulting survival probability. Repeating this process many times
produces an estimate of the CDF of this probability.

A.4.6 Uncertainties.

In this section we discuss some of the uncertainties that befuddle our best efforts
to understand and evaluate the performance of a system, large or small. There is no
way in this life that we can eliminate all uncertainties, but it is important to be aware
of as many of them as possible so that any efforts to reduce them can be properly
allocated.

A.4.6.1 Modelinl Errors. The results of a performance analysis apply to the system
model used and to the system itself only if the model is a faithful representation of
the system insofar as the particular analysis is concerned. It is probably safe to say
that the creation of a model of a large system is the most difficult part of a perfor-
mance study and the one most likely to produce wrong answers. The most meticu-
lous and exhaustive study using an incorrect model will never produce correct results
for the modeled system.

A bad model is usually hard to detect because in most cases a lot of time and
effort has been expended in its creation. Every effort must be made to compare
model results of any kind against those produced by the real system. A discrepancy

A-36



suggests either changing the model to produce the proper results, or, if the model
results are preferable to those of the system, chan in the system to match the
model (the latter is why many models are built in the first place).

A.4.6.2 Random Error. Random errors are simply those variations in the
performance of a system which are irreducible. By testing we are usually able to
describe the behavior of such errors in terms of a probability distribution, but it is
never possible to predict the particular value that will occur the next time the system
operates. The effects of random errors can sometimes be overcome by using
redundancy in a system; we can create a more reliable system if we can connect its
unreliable components in parallel. On the other hand, using many reliable
components in series tends to create unreliable systems.

A.4.6.3 Systematic Uncertainties. Systematic uncertainties are those which are
associated with an increased variability, but which we are aware of and can
presumably reduce in one way or another. For example, measurements of almost
any kind involve the object being measured, the measuring instrument, and the
person doing the measuring. All three of these may produce some random errors,
but the instrument and the measurer may also contribute systematic uncertainties
(biases) -- for example, an imprecise or inaccurate instrument or an unskilled
measurer, both of which can be improved if need be.

A fragility function will almost certainly involve both random errors and
systematic uncertainties -- there are always more experiments which ought to be
done in order to improve a formula or an algorithm.

It is, of course, highly desirable to identify the existence of systematic uncer-
tainties and to analyze their effects upon the system performance. Traditional
statistical analysis of variance techniques may be useful for this in some situations.

In Monte Carlo simulations and component tests some uncertainty is introduced
because of sample size limitations. The question of how many simulations or tests
are enough is always pertinent, but is frequently ignored. We have discussed these
problems to some extent earlier and will reiterate that they are always with us, but
are amenable to study, and, given the necessary resources, reducible.

A.4.7 Large System Analyses.

The analysis (usually a simulation) of a small system is generally a simple and
str'jigPhtforward procedure. A system that contains many components that are
connected together in a complex manner can present a much more serious problem.
Fortunately, our analysis tool box now contains large and fast computers and many
special computer programs for doing much of the work. However, the creation of
an adequate system model, and the creation of additional computer programs to
handle non-standard situations still requires a great deal of human expertise. There
is no single tool that will serve all kinds of system models, but there is no obvious
reason to doubt that any system can be modeled and analyzed. This is not to say
that the resulting answers will be what is desired or expected because the cost
and/or difficulty of extensive component testing will, in most cases, require prior
distributions with considerable variability, and these will probably not produce
comforting results.
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APPENDIX B

GLOSSARY OF TERMS

AGT - aboveground test

Bayesian - one who believes that any quantity whose value he does not know is a
random variable and that it is possible to express his current knowledge about such a
random variable in the form of a PDF or PMF

BMEWS - Ballistic Missile Early Warning System

Central Limit Theorem - the sum of a large number of independent random variables
has approximately a normal distribution regardless of what distribution the
summands have

CDF - cumulative distribution function: Pr(X > x)

CINCSPACE - Commander In Chief, Space

Component - an element of a system comprising one or more piece parts

Conditional Distribution - the resultant probability distribution obtained from a
joint probability distribution given the specified value of one or more other random
variables

Conditioning Event - the event whose occurrence is postulated to occur before
finding the conditional distribution

Confidence Interval - an interval within which the value of a random variable is likely
to lie with specified probability

Continuous Random Variable - a random variable that takes values within a

continuous set of real numbers

Discrete Random Variable - a random variable that takes only a discrete set of values

Distribution-free - no distribution form has been assumed for the random variable of
interest

DSP - Defense Support Program

Expected Value - see mean

Experiment - exercising the system one or more times to observe the result

Fragility Function - a function relating the probability of catastrophic damage to a
component as a function of the stress imposed

b

Fundamental Theorem of Calculus - F'(x) = f(x) andff(x)dx = F(b)-F(a)

GO - a probabilistic analysis procedure and software for modeling systems to
develop information about system performance from similar data about the
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constituent components. Models are success-oriented and easy to develop and
validate. The basic GO procedure is supplemented with additional software to
identify fault sets and to place confidence bounds on system event estimates as a
function of data uncertainties. (See References)
GO type-kind numbers - type: one of 17 logical operators in GO; kind: a number
associating probabilities in a data file to the component operation states

GBI - Ground-Based Interceptor

GBR - Ground-Based Radar

GPALS - Global Protection Against Limited Strikes

GSTS - Ground-Based Surveillance and Tracking System

Interval Estimate - an interval in which the values taken by a random variable are
likely to be, usually associated with a probability

Kolmogorov-Smirnov Random Variable -defined as a function of confidence and
sample size permitting the construction of a distribution-free band about a sample
CDF containing the true CDF with specified confidence

Law of Large Numbers - as the number of samples becomes large the variation
between the sample mean and the true mean becomes arbitrarily small

LCB - Lower Confidence Bound

Marginal Distribution - the distribution for a single variable after summing (or
integrating) out all other random variables in a joint probability distribution

Mean - the first moment about the origin of any PDF or PMF: symbol m

Model - a representation of some aspects of a system

Monte Carlo Simulation - random sampling from known distributions

Mutually Exclusive Events - two events are mutually exclusive if the occurrence of
either precludes the occurrence of the other

NCA - National Command Authority

NMD - National Missile Defense

Non-parametric - no distribution form has been assumed for the random variable of
interest

Outcome - a fundamental result of an experiment

Parameter - constants that can take various values to define specific distributions
within a class

PDF - probability density function (defined for continuous random variables)
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Pk - probability of kill

PMF - probability mass function (defined for discrete random variables)

Point Estimate - a single value said to be representative of values taken by a random
variable: often specific estimators are used (e.g., the mean)

Posterior Distribution - the distribution resultant after additional information is

provided

Probability Interval - Bayesian terminology: same as a confidence interval

Prior Distribution - the distribution assumed by a Bayesian before additional
information is provided

Random Drawing - each member of the population has an equal chance of being
drawn on each trial

Random Error - irreducible experimental scatter

Random Sample - a set of observations obtained from a random drawing from a
population

Random Variable - a variable whose values range over a set of real numbers

Sample Space - the set of possible outcomes from an experiment

S.D. or SD - standard deviation; square root of variance: symbol a

Standard Normal Probability Distribution - a normal distribution with mean 0 and
S.D. 1 into which all other normal distributions can be transformed

Statistical Independence - two events are statistically independent when the
occurrence of one in no way influences the occurrence of the other

Subsystem - an element of a system comprising several components

Survivability - the probability that a component or system survives a specified threat

Survivability Function - the inverse of the system survivability CDF

System - a collection of elements - piece parts, components, subsystems -designed to
perform certain functions

Systematic Uncertainty - uncertainties or biases caused by lack of knowledge which
can be reduced by additional tests and analysis

UGT - underground test

Validation - establishing by reason, simulation, test data, and procedures that a
statement is valid

Variance - the second moment about the mean of any PDF or PMF: symbol 02
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ATTN: LTCOL M CRAWFORD ATTN: DT-4D ROY AMACHER
ATTN: LTCOL MAGILL ATTN: DTJVORONA

DEF RSCH & ENGRG ATTN: OGA-4A

ATTN: DIR NAVAL WARFARE & MOB DEFENSE LOGISTICS AGENCY
2 CYS ATTN: DIR TEST FACILITIES & RESOURCES ATTN: DLA-F
2 CYS ATTN: DIR WEAP SYS ASSMNT ATTN: DLA-QE
2 CYS ATTN: DEP DIR TWP ATTN: DLA-QES

ATTN: DEP DIR TEST EVAL ATTN: DLA-SCC
A'TN: DIR AIR WARFARE ATTN: DLA-SCT

2 CYS ATTN: DEP DIR R & AT ATTN: DLSMO
ATTN: DIR OFF & SPACE SYS
ATTN: DEP DIR S & TNF DEFENSE NUCLEAR AGENCY

2 CYS ATTN: DIR STRAT AERO & TN SYS 2 CYS ATTN: ACCW
2CYS ATTN: ACFE

DEFENSE ADVANCED RSCH PROJ AGENCY 3 CYS ATTN: ACST
ATIN: ASST DIR ELECTRONIC SCIENCES DIV ATTN: ACTL
ATTN: CHIEF SCIENTIST ATTN: DDIR
ATTN: DEP DIR RESEARCH ATTN: DFOP
ATTN: DIR AEROSPACE & STRATEGIC TECH ATTN: DFRA JOAN MA PIERRE
ATTN: DIR DEFENSE SCIENCES OFC ATTN: DFTD
A'TN: DIR NUCLEAR MONITORING RESEARCH 5 CYS ATTN: DIRECTOR
ATTN: DIR PHOTOTYPE PLANNING OFC ATTN: MID
ATTN: DIR TACTICAL TECHNOLOGY OFC 10 CYS ATTN: NANF
ATTN: DIR NAVAL TECHNOLOGY OFC 10 CYS ATTN: NASF
ATTN: DIRECTOR 10CYS ATTN: NSNS
ATTN: T-O 10CYS ATTN: NSSD

DEFENSE COMMUNICATION AGENCY ATTN: OPAC

ATTN: JOHN SELISKAR ATTN: OPNA
ATTN: OPNO

DEFENSE COMMUNICATION AGENCY A'TN: OPNS
ATTN: ZENOBIA PERRY 5 CYS ATTN: OTA

50 CYS ATTN: OTA CAPT D RICHLIN
DEFENSE COMMUNICATIONS ENGINEER CENTER ATTN: RAAE

ATTN: DOC CTRL DR1- ATTN: RAAE K SCHWARTZ
ATTN: DRTS ATTN: RAEE
ATTN: R410 ATTN: RAEE AL CONSTANTINE

ATTN: RAEE CAPT R STIERWALT
DEFENSE ELECTRONIC SUPPLY CENTER ATTN: RAEE DR PALKUTI

ATTN: DESC-E 1OCYS ATTN: RAEV
ATTN: DESC-EC 10 CYS ATTN: RARP
ATTN: MR JOHNSON DESC-SPP ATTN: SPSD

ATTN: SPSP
DEFENSE INFORMATION SYSTEMS ATTN: SPWE

ATTN: A200 ATTN: SPWE
ATTN: A330 10 CYS ATTN: SPWE K PETERSEN
ATTN: A400 5 CYS ATIN: TDTR
ATTN: A500 2 CYS ATTN: TITL
ATTN: A700
ATTN: A800 DEFENSE TECHNICAL INFORMATION CENTER
ATTN: CODE A300 M DOOLY ATTN: DTIC/FDAB
ATTN: C4S/SCC
ATTN: H102 ASSOC DIR ENGRNG & TECH DEPARTMENT OF DEFENSE
ATTN: H110 ADV TECH OFC ATTN: PEOCCU-UT COL L KARCH
ATTN: H396 TECH MGT CTR ATTN: PMA-283-21
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ATTN: NAVAL WARFARE & MOB ATTN: SLCHD-NW-TN R LINGEBACH
ATTN: DIR LAND WARFARE ATTN: SLCHD-NW-TS
ATTN: DEP DIR TEST EVAL ATTN: SLCHD-RI

ATTN: SLCHD-RP
DEPUTY DIRECTOR OF DEF RSCH & ENGRG ATTN: SLCHD-TL-WRF

ATTN: LTC P J ENGSTROM ATTN: SLCHD-TN

DEPUTY UNDER SECRETARY OF DEFENSE ATTN: SLCIS-IM-TL

RESEARCH & ADVANCED TECHNOLOGY ATTN: SLCSM-AA D ROBERTS
ATTN: 0 LOMACKY ATTN: SLCSM-D COL J DOYLE

NATIONAL DEFENSE UNIVERSITY OFFICE OF ASSISTANT SECRETARY OF ARMY

ATTN: NDU-LD-CDC ATTN: DAMA-PPM
ATTN: SARD-TR

ATTN: CLASSIFIED LIBRARY ATTN: SARD-ZCS

NET ASSESSMENT U S ARMY BELVOIR RD&E CTR
ATTN: DIRECTOR ATTN: STRBE-FGM
ATTN: DOCUMENT CONTROL ATTN: STRBE-FGP HUNGATE

OPERATIONAL TEST & EVALUATION ATTN: STRBE-H WEN H CHEN

ATTN: DEP DIR OPER TEST & EVAL STRAT SYS U S ARMY CHEMICAL RSCH & DEV CTR
ATTN: SCIENCE ADVISOR ATTN: SMCCR-DDP
ATTN: DEP DIR RESOURCES & ADMIN ATTN: SMCCR-MSI

STRATEGIC DEFENSE INITIATIVE ORGANIZATION 4 CYS ATTN: SMCCR-NB

ATTN: DA/DR GERRY ATTN: SMCCR-PPC
ATTN: SMCCR-PPS

THE JOINT STAFFTHEITSTN: JU S ARMY ELECTRONIC RESEARCH & DEV CMD)ATTN: J-5 ATTN: PROJECT MANAGER
ATTN: J-6A J TOMA
ATTN: J-6E U S ARMY MATERIAL TECHNOLOGY LABORATORY
ATTN: J-6F ATTN: COMMANDER
ATTN: J-8 CAD S PATE ATTN: DRXMR-HH
ATTN: J-8 EXECUTIVE OFFICE ATTN: SLCMT-BM
ATTN: J-8 TSD ATTN: SLCMT-OMM
ATTN: J-8/NFAD J L GRUMBLES
ATTN: J8 NUCLEAR FORCE ANALYSIS DIV U S ARMY MISSILE & SPACE INTELLIGENCE CENTER

DEPARTMENT OF THE ARMY ATTN: AIAMS-YRP BELCHER

CHAPARRALJFARR U S ARMY MISSILE COMMAND

ATTN: AMCPM-CF ATTN: AMCPM-CC-TM-SE
ATTN: AMCPM-CF-T

DEFENSE SYSTEMS MANAGEMENT COLLEGE ATTN: AMCPM-HA-SE-MS
ATTN: COL H E LINTON ATTN: AMCPM-HAER

ATTN: AMCPM-HD

HARRY DIAMOND LABORATORIES ATTN: AMCPM-HD-G
ATTN: AMSCL-PA ATTN: AMCPM-HDE
ATTN: AMSLC-MI-FI M MARDEN ATTN: AMCPM-ML
ATTN: DELHD-SE ATTN: AMCPM-RP-E
ATTN: SLCHD-HPM ATTN: AMSMI-RD-CS-R
ATTN: SLCHD-NP-P K WARNER ATTN: AMSMI-RD-ST-NB
ATTN: SLCHD-NW ATTN: AMSMI-RD-TE-C-EM
ATTN: SLCHD-NW-E R L ATKINSON ATTN: AMSMI-RD-TE-S
ATTN: SLCHD-NW-EH S KHAN ATTN: PM/TO
ATTN: SLCHD-NWoESATTN: SLCHD-NW-ES T BOCK U S ARMY STRATEGIC DEFENSE COMMANDATTN: SLCHD-NW-HPM H BRISKER ATTN: CSSD-SA-EVATTN: SLCHD-NW-P ATTN: CSSD-SA-EV R CROWSONATTN: SLCHD-NW-P A BEVEC ATTN: CSSD-SLATTN: SLCHD-NW-P M ABE A-IATTN: SFAE-SD-GST-E P BUHRMAN

ATTN: SLCHD-NW-P J J CORRIGAN U S ARMY TEST & EVALUATION COMMAND
ATTN: SLCHD-NW-PW T MAK ATTN: AMSTE-TA-F
ATTN: SLCHD-NW-R POLIMADEI ATTN: AMSTE-TA-F L TELETSKIATTN: SLCHD-NW-RP
ATTN: SLCHD-NW-TN
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U S ARMY VULNERABILITY/LETHALITY NAVAL WEAPONS CENTER
ATTN: AMSLC-BL-N BASSETT ATTN: T ANDERSON
ATTN: AMSLC-VL-NE DR J FEENEY ATTN: CODE 3181 B KOWALSKY

ATTN: CODE 3181 T BELL
US ARMY COMMUNICATIONS-ELECTRONICS CMD ATTN: CODE 3181 DRIUSSI

ATTN: PM SATELLITE COMMUNICATIONS ATTN: CODE 32
ATTN: CODE 3433 B BABCOCK

US ARMY ORDNANCE MISSILE & MUNITIONS ATTN: CODE 39104
CTR & SCHOOL ATTN: CODE 3917

ATTN: ATSK-CC BILL GREEN
NAVAL WEAPONS EVALUATION FACILITY

USA SURVIVABILITY MANAGMENT OFFICE ATTN: CODE 20 S MAUK
ATTN: AMSLC-VL-NE DR J FEENEY ATTN: CODE 22 RAY C TERRY
ATTN: F MANION ATTN: CODE 224 A ALDERETE
ATTN: SLCSM-SE J BRAND

NAVSEA
DEPARTMENT OF THE NAVY ATTN: J SATIN

DEPARTMENT OF THE NAVY OFFICE OF NAVAL RESEARCH
ATTN: DIRECTOR ATTN: CODE OCNF-10P5
ATTN: JCM-04 ATTN: CODE OCNR-1114
ATTN: JCMG-707 ATTN: CODE OCNR-1114SE

GPS NAVSTAR JOINT PROGRAM OFFICE ATTN: CODE OCNR-1 114SP

ATTN: CHARLES TABBERT ATTN: CODE OCNR-1114SS
ATTN: CODE OCNR-12

MARINE CORPS R&D ACQUISITION COMMAND ATTN: CODE OCNR-12D
ATTN: CODE PSA CAPT G MISLICK ATTN: CODE OCNR-121

ATTN: CODE ONCR-00F
MARINE CORPS RESEARCH, DEVELOPMENT ATTN: CODE ONCR-10E

ATTN: CODE PSE-C S BELLORA ATTN: CODE ONCR-10P4
ATTN: CODE ONCR-10P6

NAVAL POSTGRADUATE SCHOOL ATTN: CODE ONCR-111
ATTN: CODE 1424 LIBRARY ATTN: CODE ONCR-1 11D
ATTN: PHYSICS DEPT PROF K WOHLER) ATTN: CODE ONCR-1 112A1
ATTN: PROF R BALL CODE AA/BP ATTN: CODE 1112

ATTN: CODE 1132SM
NAVAL RESEARCH LABORATORY

ATTN: CODE 2627 OPERATIONAL TEST & EVALUATION FORCE
ATTN: CODE 4600 D NAGEL ATTN: COMMANDER
ATTN: CODE 4613 A B CAMPBELL
ATTN: CODE 6180 SPACE & NAVAL WARFARE SYSTEMS CMD
ATTN: CODE 6303 R GULARTE ATTN: PD-40
ATTN: CODE 6550 M PAULI ATTN: PMW-156-13A
ATTN: CODE 6800 ATTN: PMW-142

ATTN: PMW-145
NAVAL SPACE COMMAND ATTN: PMW-146

ATTN: CODE VN313 J TRAMMEL ATTN: PMW-147
ATTN: PMW-151

NAVAL SURFACE WARFARE CENTER ATTN: PMW-152
ATTN: CODE G13 B STROTHER ATTN: PMW-153
ATTN: CODE H33 M POMPEII ATTN: PMW-180-21
ATTN: COMMANDER

DEPARTMENT OF ThE AIR FORCE
NAVAL SURFACE WEAPONS CENTER

ATTN: MAJ M PLUMER AERONAUTICAL SYSTEMS DIVISION
ATTN: ASD/ENACE

NAVAL WAR COLLEGE ATTN: ASD/ENSSS
ATTN: CODE E-III ATTN: ASD/RWWI

NAVAL WARFARE ASSESSMENT CENTER AF SPACE COMMAND
ATTN: CODE 12A ATTN: LKNIP MAJ S HOFF
ATTN: CODE 34W ATTN: SM-ALC DET 25 P C LARTER
ATTN: DOCUMENT CONTROL ATTN: DOCE
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AIR FORCE INSTITUTE OF TECHNOLOGY/EN WRIGHT LABORATORY
ATTN: LTCOL R TUTTLE ATTN: D WATTS

AIR FORCE MATERIAL COMMAND WRIGHT RESEARCH & DEVELOPMENT CENTER
ATTN: AFMC/XRNA CAPT K HUNIGAN ATTN: FIBR ANALYSIS & OPTIMIZATION BR
ATTN: YAGD MSGT R ROGAN ATTN: AFWAL/FIAA J BYRNES

ATTN: WRDC/MLPJ C PELLERIN
AIR FORCE OPERATIONAL TEST & EVAL CTR

ATTN: CNP DEPARTMENT OF ENERGY
ATTN: DR M WILLIAMS
ATTN: LGAW DEPARTMENT OF ENERGY

ATTN: LG4S ATTN: C MEYERS

ATTN: MM ARTMAN LAWRENCE LIVERMORE NATIONAL LAB
ATTN: MAJ MARC STRICKLAND ATTN: DIRECTOR
ATTN: OAS R DEFFENBAUGH ATTN: L-10 W E FARLEY
ATTN: OASZ ATTN: L-13 W DUNLOP
ATTN: OAW ATTN: L-153 M BLAND
ATTN: OAWF ATTN: L-153 M ONG
ATTN: OAWV ATTN: L-156 A POGGIO
ATTN: OAY ATTN: L-20 DR G MILLER
ATTN: OAS ATTN: L-24 F KOVAR
ATTN: ST ATTN: L-262 PAUL GUDIKSEN
ATTN: TEFG ATTN: L-302 W WHITESELL
ATTN: TEKA ATTN: L-389 B WEINSTEIN
ATTN: TET ATTN: L-389 F EBY
ATTN: TEWD ATTN: L-389 G STAEHLE
ATTN: TEZN MAJ TOM HERRING ATTN: L-389 P EBERT
A''N: "-ZN ATTN: L-389 T HARPER

AIR FORCE SPACE COMMAMD (LKI) ATTN: L-439 J KELLER

ATTN: CAPT WEIDNER ATTN: L-491 R WIRTENSON

ATTN: LT D BARRON ATTN: L-54 J RONCHETTO

ATTN: MAJ D ROBINSON ATTN: L-6 L WOODRUFF

ATTN: STOP 7 ATTN: L-610 F E FROST
ATTN: L-83 M GUSTAVSON

AIR FORCE SPACE TECHNOLOGY CENTER ATTN: L-83 DR P HERMAN
ATTN: DR J JANNI ATTN: L-84 G POMYKAL
ATTN: SWL V OTERA ATTN: L-85 K JOHNSON

ATTN: L-85 P CHRZANOWSKI
FOREIGN AEROSPACE SCIENCE AND ATTN: L-95 PAUL C WHEELER

ATTN: FASTC/TAIX CAPT S HANCOCK ATTN: W CROWLEY

FOREIGN TECHNOLOGY DIVISION LOS ALAMOS NATIONAL LABORATORY
ATTN: G CYR ATTN: Al12
ATTN: LTG MASSE ATTN: B229 J BARAN
ATTN: TTX/-1 CAPT S HANCOCK ATTN: G SCHROEDER

ATTN: J CARTER
PHILLIPS LABORATORY ATTN: M GILLESPIE

ATTN: NTAAC ATTN: D STROTTMAN
ATTN: NTES LTCOL T BRETZ ATTN: MS P364
ATTN: OL-NS/EN ATTN: REPORT LIBRARY
ATTN: PL/WS L CONTRERAS ATTN: RBEHRENS

ROME LABORATORY ATTN: M SCHICK

ATTN: COMMANDER ATTN: R KIRBY
ATTN: MAJ WILLIS

SPACE DIVISION(AFSC) ATTN: LDEYOUNG

ATTN: MHE SANDIA NATIONAL LABORATORIES
ATTN: SSD/MHC ATTN: DIV 5311 R GALLAGHER
ATTN: SSD/MS ATTN: DIV 5371 D HENSON
ATTN: SSDIMSGA LT R MILLER ATTN: DIV 8242 M BIRNBAUM
ATTN: SSD/MZS ATTN: TECH LIB PERIODICALSATTrN: SSD/IMZS

ATTN: SSD/MZSE SANDIA NATIONAL LABORATORIES

ATTN: A CHABAI DIV 9311
ATTN: DEPT 5160
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ATTN: DEPT 9350 RAD EFFECTS BDM INTERNATIONAL INC
ATTN: DIV 1231 J MAENCHEN ATTN: B POWERS
ATTN: DIV 5214 J S PHILLIPS ATTN: BV-36
ATTN: DIV 9341 PAUL RAGLIN ATTN: E DORCHAK
ATTN: DR J WIRTH ORG 5800 ATTN: J RYBICKI
ATTN: F DEAN DIV 5153 ATTN: J STOCKTON
ATTN: L M CHOATE DIV 9340 ATTN: 0 DOERFLINGER
ATTN: L TROST ATTN: W COOPER
ATTN: ORG 4061 J ARFMAN ATTN: W SWEENEY
ATTN: ORG 7263 R CASE
ATTN: ORG 9300 J E POWELL BDM INTERNATIONAL INC

10 CYS ATTN: ORG 9340 W BEEZHOLD ATTN: B TORRES
ATTN: R HAGENGRUBER ATTN: D E NASH
ATrN: R J LAWRENCE DIV 1541 ATTN: D WUNSCH
ATTN: R KING DIV 9127 ATTN: M HESSHEIMER
ATTN: REPORTS REF 3144 ATTN: R HUTCHINS
ATTN: TECH LIB 3141 ATTN: R KARASKIEWICZ
ATTN: W BALLARD DIV 9341 ATTN: R STEPHANS

ATTN: R-33 B PLUMMER
U.S. DEPARTMENT OF ENERGY ATTN: T LAMBARSKI

ATTN: OMA/DP-252 I WILLIAMS ATTN: W CORDOVA
ATTN: OMA/DP-252 MAJ D WADE
ATTN: OMA/DP-252 R GUNDERSON BOOZ-ALLEN & HAMILTON, INC
ATTN: OP 241 F O'SHAUGHNESSY ATTN: AP-1 H KOHN

ATTN: B SMITH
DEPARTMENT OF DEFENSE CONTRACTORS ATTN: C HALL

ATTN: F SIMMONS
AEROSPACE CORP ATTN: J KEE

ATTN: D BARNARD ATTN: K SCHAFFER
ATTN: H BLAES ATTN: L ALBRIGHT
ATTN: LIBRARY ACQUISITION ATTN: M SAUNDERS
ATTN: M HOPKINS ATTN: R BALESTRI
ATTN: M WATSON ATTN: R LEZEC
ATTN: E BROUILLETTE ATTN: R RAPIDS
ATTN: S GYETVAY ATTN: S ENG
ATTN: W BARRY ATTN: V DEPRENGER
ATTN: F FINLAYSON
ATTN: PBUCHMAN BOOZ-ALLEN & HAMILTON, INC
ATTN: SEED M4/934 J CHAI ATTN: C HAYSLIPP

ATTN: H WEBSTER
ANALYTIC SERVICES, INC (ANSER) ATTN: J KEE

ATTN: DR J SEELIG ATTN: R RAPIDS
ATTN: DR S CROWLEY ATTN: T HANSON
ATTN: LIBRARY
ATTN: MSL SYS DIV MCN BOOZIALLEN & HAMILTON INC

ATTN: J LEE
APPLIED RESEARCH ASSOCIATES ATTN: R SWISTAK

ATTN: R FLORY
ATTN: S SPERRY CALSPAN CORP

ATTN: M HOLDEN
APTEK, INC

ATTN: T MEAGHER CHARLES STARK DRAPER LAB, INC
ATTN: VICE PRESIDENT-ENGINEERING ATTN: B HARRIS

BALL AEROSPACE SYSTEMS DIVISION COMPUTER SCIENCES CORP
ATTN: D L MURATA-SEAWALT ATTN: R SCHEMMEL

ATTN: T RADEBAUGH
BATTELLE EDGEWOOD OPERATIONS

ATTN: CBIAC J MCNEELY DELCO SYSTEMS OPERATIONS
ATTN: C CAPPS

BATTELLE MEMORIAL INSTITUTE
ATTN: V PUGLIELLI DYNAMICS RESEARCH CORP
ATTN: TACTICAL TECH CTR ATTN: R CUCE
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E-SYSTEMS, INC LOCKHEED AERONAUTICAL SYSTEMS
ATTN: TECH INFO CTR ATTN: CENTRAL LIBRARY

E-SYSTEMS, INC LOGICON R & D ASSOCIATES
ATTN: DR W DICKSON ATTN: C MO

ATTN: DR T A PUCIK
GENERAL DYNAMICS-FORT WORTH DIVISION ATTN: G IVY

ATTN: MZ-5997 ATTN: G K SCHLEGEL
ATTN: G MESSENGER

HUDSON INSTITUTE, INC ATTN: G SAFONOV
ATTN: LIBRARY ATTN: J KING

JAYCOR ATTN: LIBRARY

ATTN: D WALTERS LOGICON R & D ASSOCIATES
ATTN: DR B C PASSENHEIM ATTN: D CARLSON
ATTN: E WENAAS ATtN: DOCUMENT CONTROL
ATTN: W SEIDLER ATTN: S WOODFORD

JAYCOR LOGICON R & D ASSOCIATES
ATTN: CYRUS P KNOWLES ATTN: MANAGER

ATTN: E IRISH

ATTN: E WENAAS M I T LINCOLN LAB
ATTN: G THEROUX ATTN: V SFERRINO
ATTN: H DICKENSON ATTN: C F WILSON

JAYCOR ATTN: V MISELISJAYCORAT'rN: R HALL

ATTN: B DAVIS

ATTN: W CREVIER MARTIN MARIETTA CORP

JAYCOR ATTN: DR S ZEIBERG

ATTN: R POLL MISSION RESEARCH CORP
JAYCOR ATTN: A BOLT

ATYC : P ATTN: DOCUMENT CONTROL
ATTN: P MLAKAR ATTN: E B SAVAGE

JAYCOR ATTN: E PETTUS

ATTN: C THOMPSON ATTN: J HAWXHURST
ATTN: TECH INFO CENTER

KAMAN SCIENCES CORP ATTN: W CREVIER
ATTN: D COYNE MITRE CORPORATION
ATTN: L MENTE ATTN: LIBRARY
ATTN: LIBRARY
ATTN: R RAAB NICHOLS RESEARCH CORPORATION

KAMAN SCIENCES CORP ATTN: G SHELBY

ATTN: ASST SUPV SCTY ATTN: HENRY T SMITH

ATTN: C EKLUND ATTN: K DENT

2 CYS ATTN: D RODVOLD ATTN: LARS ERICSSON

2 CYS ATTN: R WILLIAMS ATTN: R BYRN

2 CYS ATTN: W GATELEY NICHOLS RESEARCH CORPORATION
ATTN: J EAMON ATTN: L GAROZZO
ATTN: J HARPER
ATTN: J KEITH PHYSICS INTERNATIONAL CO

2 CYS ATTN: P BOOK ATTN: LIBRARY
ATTN: P WELLS
ATrN: R GREER S-CUBED

2 CYS ATTN: T A STRINGER ATTN: DR M MONTGOMERY
ATTN: W YOUNG ATTN: DR C DISMUKES

ATTN: DR G GURTMAN
KAMAN SCIENCES CORP 3 CYS ATTN: H FREIBERG

ATTN: DASIAC ATTN: J KNIGHTEN
ATTN: E CONRAD ATTN: J M WILKENFELD
ATTN: R GUENTHER A'TN: R LAFRENZ

KAMAN SCIENCES CORPORATION ATTN: R WILSON

ATTN: DASIAC ATTN: WAISMAN
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S-CUBED SPARTA INC
ATTN: J ATKINSON ATTN: H M BERKOWITZ
ATTN: J NORTHROP

SPIRE CORP
SCI TECHNOLOGY, INC ATTN: R EVANS

ATTN: DOCUMENT CONTROL
SYSTEM PLANNING CORP

SCIENCE APPLICATIONS INTL CORP ATTN: P MOON
ATTN: TECHNICAL REPORT SYSTEM

TELEDYNE BROWN ENGINEERING
SCIENCE APPLICATIONS INTL CORP ATTN: P SHELTON

ATTN: TECH LIBRARY
WEIDLINGER ASSOCIATES, INC

ATTN: T DEEVY
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